The Essential David Bohm


David Bohm - 2002
    For the first time in a single volume, The Essential David Bohm offers a comprehensive overview of Bohm's original works from a non-technical perspective. Including three chapters of previously unpublished material, each reading has been selected to highlight some aspect of the implicate order process, and to provide an introduction to one of the most provocative thinkers of our time.

'Nature and the Greeks' and 'Science and Humanism'


Erwin Schrödinger - 1954
    Here the texts of two of Schr�dinger's most famous lecture series are made available again. In the first, entitled Nature and the Greeks, Schr�dinger offers a historical account of the scientific world picture. In the second, called Science and Humanism, he addresses fundamental questions about the link between scientific and spiritual matters. As Roger Penrose confirms, these are the profound thoughts of a great mind, and as relevant today as when they were first published in the 1950s.

Lectures on Quantum Mechanics


Paul A.M. Dirac - 1964
    The remaining lectures build on that idea, examining the possibility of building a relativistic quantum theory on curved surfaces or flat surfaces.

The Character of Physical Law


Richard P. Feynman - 1964
    He maintains at the outset that the importance of a physical law isn't "how clever we are to have found it out, but...how clever nature is to pay attention to it" & tends his discussions toward a final exposition of the elegance & simplicity of all scientific laws. Rather than an essay on the most significant achievements in modern science, The Character of Physical Law is a statement of what is most remarkable in nature. His enlightened approach, wit & enthusiasm make this a memorable exposition of the scientist's craft. The Law of Gravitation is the principal example. Relating the details of its discovery & stressing its mathematical character, he uses it to demonstrate the essential interaction of mathematics & physics. He views mathematics as the key to any system of scientific laws, suggesting that if it were possible to fill out the structure of scientific theory completely, the result would be an integrated set of axioms. The principles of conservation, symmetry & time-irreversibility are then considered in relation to developments in classical & modern physics. In his final lecture he develops his own analysis of the process & future of scientific discovery. Like any set of oral reflections, The Character of Physical Law has value as a demonstration of a mind in action. The reader is particularly lucky in Feynman. One of the most eminent & imaginative modern physicists, he was Professor of Theoretical Physics at the California Institute of Technology until his death in 1988. He's best known for work on the quantum theory of the electromagnetic field, as well as for later research in the field of low-temperature physics. In 1954 he received the Albert Einstein Award for an "outstanding contribution to knowledge in mathematical & physical sciences"; in 1965 he was appointed to Foreign Membership in the Royal Society & was awarded the Nobel Prize.

Paradox: The Nine Greatest Enigmas in Physics


Jim Al-Khalili - 2012
    A fun and fascinating look at great scientific paradoxes.   Throughout history, scientists have come up with theories and ideas that just don't seem to make sense.  These we call paradoxes.  The paradoxes Al-Khalili offers are drawn chiefly from physics and astronomy and represent those that have stumped some of the finest minds.  For example, how can a cat be both dead and alive at the same time?  Why will Achilles never beat a tortoise in a race, no matter how fast he runs?  And how can a person be ten years older than his twin?   With elegant explanations that bring the reader inside the mind of those who've developed them, Al-Khalili helps us to see that, in fact, paradoxes can be solved if seen from the right angle.  Just as surely as Al-Khalili narrates the enduring fascination of these classic paradoxes, he reveals their underlying logic.  In doing so, he brings to life a select group of the most exciting concepts in human knowledge.  Paradox is mind-expanding fun.

Elements of Electromagnetics


Matthew N.O. Sadiku - 1993
    The book also provides a balanced presentation of time-varying and static fields, preparingstudents for employment in today's industrial and manufacturing sectors. Streamlined to facilitate student understanding, this edition features worked examples in every chapter that explain how to use the theory presented in the text to solve different kinds of problems. Numerical methods, including MATLAB and vector analysis, are also included to help students analyzesituations that they are likely to encounter in industry practice. Elements of Electromagnetics, Fifth Edition, is designed for introductory undergraduate courses in electromagnetics.

The Best American Science and Nature Writing 2000


David Quammen - 2000
    David Quammen, together with series editor Burkhard Bilger, has assembled a remarkable group of writers whose selections appeared in periodicals from NATIONAL GEOGRAPHIC, SCIENCE, and THE NEW YORKER to PUERTO DEL SOL and DOUBLETAKE. Among the acclaimed writers represented in this volume are Richard Preston on “The Demon in the Freezer,” John McPhee bidding “Farewell to the Nineteeth Century,” Oliver Sacks remembering the “Brilliant Light” of his boyhood, and Wendell Berry going “Back to the Land.” Also including such literary lights as Anne Fadiman, David Guterson, Edward Hoagland, Natalie Angier, and Peter Matthiessen, this new collection presents selections bound together by their timelessness.

The Void


Frank Close - 2007
    Readers will find an enlightening history of the vacuum: how the efforts to make a better vacuum led to the discovery of the electron; the understanding that the vacuum is filled with fields; the ideas of Newton, Mach, and Einstein on the nature of space and time; the mysterious aether and how Einstein did away with it; and the latest ideas that the vacuum is filled with the Higgs field. The story ranges from the absolute zero of temperature and the seething vacuum of virtual particles and anti-particles that fills space, to the extreme heat and energy of the early universe. It compares the ways that substances change from gas to liquid and solid with the way that the vacuum of our universe has changed as the temperature dropped following the Big Bang. It covers modern ideas that there may be more dimensions to the void than those that we currently are aware of and even that our universe is but one in a multiverse. The Void takes us inside a field of science that may ultimately provide answers to some of cosmology's most fundamental questions: what lies outside the universe, and, if there was once nothing, then how did the universe begin?

Hidden In Plain Sight 9: The Physics Of Consciousness


Andrew H. Thomas - 2018
    Can a computer think? Why is your consciousness like Bitcoin? Will there be an artificial intelligence apocalypse?

The Quantum Zoo: A Tourist's Guide to the Neverending Universe


Marcus Chown - 2006
    Together, they explain virtually everything about the world we live in. But, almost a century after their advent, most people haven't the slightest clue what either is about. Did you know that there's so much empty space inside matter that the entire human race could be squeezed into the volume of a sugar cube? Or that you grow old more quickly on the top floor of a building than on the ground floor? And did you realize that 1 per cent of the static on a TV tuned between stations is the relic of the Big Bang? These and many other remarkable facts about the world are direct consequences of quantum physics and relativity. Quantum theory has literally made the modern world possible. Not only has it given us lasers, computers, and nuclear reactors, but it has provided an explanation of why the sun shines and why the ground beneath our feet is solid. Despite this, however, quantum theory and relativity remain a patchwork of fragmented ideas, vaguely understood at best and often utterly mysterious. average person. Author Marcus Chown emphatically disagrees. As Einstein himself said, Most of the fundamental ideas of science are essentially simple and may, as a rule, be expressed in a language comprehensible to everyone. If you think that the marvels of modern physics have passed you by, it is not too late. In Chown's capable hands, quantum physics and relativity are not only painless but downright fun. So sit back, relax, and get comfortable as an adept and experienced science communicator brings you quickly up to speed on some of the greatest ideas in the history of human thought.

The Trouble with Physics: The Rise of String Theory, the Fall of a Science and What Comes Next


Lee Smolin - 2006
    For more than two centuries, our understanding of the laws of nature expanded rapidly. But today, despite our best efforts, we know nothing more about these laws than we knew in the 1970s. Why is physics suddenly in trouble? And what can we do about it?One of the major problems, according to Smolin, is string theory: an ambitious attempt to formulate a “theory of everything” that explains all the particles and forces of nature and how the universe came to be. With its exotic new particles and parallel universes, string theory has captured the public’s imagination and seduced many physicists.But as Smolin reveals, there’s a deep flaw in the theory: no part of it has been tested, and no one knows how to test it. In fact, the theory appears to come in an infinite number of versions, meaning that no experiment will ever be able to prove it false. As a scientific theory, it fails. And because it has soaked up the lion’s share of funding, attracted some of the best minds, and effectively penalized young physicists for pursuing other avenues, it is dragging the rest of physics down with it.With clarity, passion, and authority, Smolin charts the rise and fall of string theory and takes a fascinating look at what will replace it. A group of young theorists has begun to develop exciting ideas that, unlike string theory, are testable. Smolin not only tells us who and what to watch for in the coming years, he offers novel solutions for seeking out and nurturing the best new talent—giving us a chance, at long last, of finding the next Einstein.

Organic Chemistry


David R. Klein - 2011
    Where did I go wrong?" Most instructors hear this complaint every year. In many cases, it is true that the student invested countless hours, only to produce abysmal results. Often, inefficient study habits are to blame. The important question is: why do so many students have difficulty preparing themselves for organic chemistry exams? There are certainly several factors at play here, but perhaps the most dominant factor is a fundamental disconnect between what students learn and the tasks expected of them. To address the disconnect in organic chemistry instruction, David Klein has developed a textbook that utilizes a skills-based approach to instruction. The textbook includes all of the concepts typically covered in an organic chemistry textbook, but special emphasis is placed on skills development to support these concepts. This emphasis upon skills development will provide students with a greater opportunity to develop proficiency in the key skills necessary to succeed in organic chemistry.As an example, resonance structures are used repeatedly throughout the course, and students must become masters of resonance structures early in the course. Therefore, a significant portion of chapter 1 is devoted to drawing resonance structures.Two chapters (6 and 12) are devoted almost entirely to skill development. Chapter 6 emphasizes skills that are necessary for drawing mechanisms, while chapter 12 prepares the student for proposing syntheses.In addition, each chapter contains numerous Skillbuilders, each of which is designed to foster a specific skill. Each skillbuildercontains three parts:1. Learn the Skill: a solved problem that demonstrates a particular skill;2. Practice the Skill: numerous problems (similar to the solved problem) that give the students an opportunity to practice and master the skill;3. Apply the Skill: one or two more-challenging problems in which the student must apply the skill in a slightly different environment. These problems include conceptual, cumulative, and applied problems that encourage students to think out of the box. Sometimes problems that foreshadow concepts introduced in later chapters are also included.All SkillBuilders are visually summarized at the end of each chapter (Skillbuilder review), followed by a list of suggested in-chapter and end-of-chapter practice problems.

Letters From An Astrophysicist


Neil deGrasse Tyson - 2019
    Now, Tyson invites us to go behind the scenes of his public fame by unveiling his candid correspondence with people across the globe who have sought him out in search of answers. In this hand-picked collection of one hundred letters, Tyson draws upon cosmic perspectives to address a vast array of questions about science, faith, philosophy, life, and of course, Pluto. His succinct, opinionated, passionate, and often funny responses reflect his popularity and standing as a leading educator.Tyson’s 2017 bestseller Astrophysics for People in a Hurry offered more than one million readers an insightful and accessible understanding of the universe. Now, revealing Tyson’s most candid and heartfelt writing yet, Letters from an Astrophysicist introduces us to a newly personal dimension of Tyson’s quest to understand our place in the cosmos.

Black Holes: The Reith Lectures


Stephen Hawking - 2016
    Black holes are stranger than anything dreamed up by science fiction writers.”In 2016 Professor Stephen Hawking delivered the BBC Reith Lectures on a subject that fascinated him for decades – black holes.In these flagship lectures the legendary physicist argued that if we could only understand black holes and how they challenge the very nature of space and time, we could unlock the secrets of the universe.

What Is Relativity?


L.D. Landau - 2003
    D. Landau and his distinguished colleague G. B. Rumer, employ a simple and straightforward manner to illuminate relativity theory's more subtle and elusive aspects. Using such familiar objects as trains, rulers, and clocks, the authors explain the reasoning behind seemingly self-contradictory ideas in which the relative seems absolute, but the absolute proves to be relative. A series of playful cartoons highlights the authors' witty observations on the laws governing inertia, the speed of light, the relationship of work and mass, and other relativistic concepts."The exposition is masterful . . . a superb book." — New York Times Book Review.