Book picks similar to
Geometry and Trigonometry for Calculus by Peter H. Selby
mathematics
nonfiction
research
geometry
Calculus [with CD]
Howard Anton - 1992
New co-authors--Irl Bivens and Stephen Davis--from Davidson College; both distinguished educators and writers.* More emphasis on graphing calculators in exercises and examples, including CAS capabilities of graphing calculators.* More problems using tabular data and more emphasis on mathematical modeling.
Magical Mathematics: The Mathematical Ideas That Animate Great Magic Tricks
Persi Diaconis - 2011
Persi Diaconis and Ron Graham provide easy, step-by-step instructions for each trick, explaining how to set up the effect and offering tips on what to say and do while performing it. Each card trick introduces a new mathematical idea, and varying the tricks in turn takes readers to the very threshold of today's mathematical knowledge.Diaconis and Graham tell the stories--and reveal the best tricks--of the eccentric and brilliant inventors of mathematical magic. The book exposes old gambling secrets through the mathematics of shuffling cards, explains the classic street-gambling scam of three-card Monte, traces the history of mathematical magic back to the oldest mathematical trick--and much more.
104 Number Theory Problems: From the Training of the USA IMO Team
Titu Andreescu - 2006
Offering inspiration and intellectual delight, the problems throughout the book encourage students to express their ideas in writing to explain how they conceive problems, what conjectures they make, and what conclusions they reach. Applying specific techniques and strategies, readers will acquire a solid understanding of the fundamental concepts and ideas of number theory.
Math on Trial: How Numbers Get Used and Abused in the Courtroom
Leila Schneps - 2013
Even the simplest numbers can become powerful forces when manipulated by politicians or the media, but in the case of the law, your liberty -- and your life -- can depend on the right calculation. In Math on Trial, mathematicians Leila Schneps and Coralie Colmez describe ten trials spanning from the nineteenth century to today, in which mathematical arguments were used -- and disastrously misused -- as evidence. They tell the stories of Sally Clark, who was accused of murdering her children by a doctor with a faulty sense of calculation; of nineteenth-century tycoon Hetty Green, whose dispute over her aunt's will became a signal case in the forensic use of mathematics; and of the case of Amanda Knox, in which a judge's misunderstanding of probability led him to discount critical evidence -- which might have kept her in jail. Offering a fresh angle on cases from the nineteenth-century Dreyfus affair to the murder trial of Dutch nurse Lucia de Berk, Schneps and Colmez show how the improper application of mathematical concepts can mean the difference between walking free and life in prison. A colorful narrative of mathematical abuse, Math on Trial blends courtroom drama, history, and math to show that legal expertise isn't't always enough to prove a person innocent.
Group Theory in the Bedroom, and Other Mathematical Diversions
Brian Hayes - 2008
(The also-rans that year included Tom Wolfe, Verlyn Klinkenborg, and Oliver Sacks.) Hayes's work in this genre has also appeared in such anthologies as The Best American Magazine Writing, The Best American Science and Nature Writing, and The Norton Reader. Here he offers us a selection of his most memorable and accessible pieces--including "Clock of Ages"--embellishing them with an overall, scene-setting preface, reconfigured illustrations, and a refreshingly self-critical "Afterthoughts" section appended to each essay.
Calculus On Manifolds: A Modern Approach To Classical Theorems Of Advanced Calculus
Michael Spivak - 1965
The approach taken here uses elementary versions of modern methods found in sophisticated mathematics. The formal prerequisites include only a term of linear algebra, a nodding acquaintance with the notation of set theory, and a respectable first-year calculus course (one which at least mentions the least upper bound (sup) and greatest lower bound (inf) of a set of real numbers). Beyond this a certain (perhaps latent) rapport with abstract mathematics will be found almost essential.
Introduction to Superstrings and M-Theory
Michio Kaku - 1989
Called by some, "the theory of everything," superstrings may solve a problem that has eluded physicists for the past 50 years, the final unification of the two great theories of the twentieth century, general relativity and quantum field theory. Now, here is a thoroughly revised, second edition of a course-tested comprehensive introductory graduate text on superstrings which stresses the most current areas of interest, not covered in other presentations, including: - Four-dimensional superstrings - Kac-Moody algebras - Teichm�ller spaces and Calabi-Yau manifolds - M-theory Membranes and D-branes - Duality and BPS relations - Matrix models The book begins with a simple discussion of point particle theory, and uses Feynman path integrals to unify the presentation of superstrings. It has been updated throughout, and three new chapters on M-theory have been added. Prerequisites are an acquaintance with quantum mechanics and relativity.
Introduction to Graph Theory
Richard J. Trudeau - 1994
This book leads the reader from simple graphs through planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. Includes exercises. 1976 edition.
What If? Serious Scientific Answers to Absurd Hypothetical Questions
Randall Munroe - 2014
It now has 600,000 to a million page hits daily. Every now and then, Munroe would get emails asking him to arbitrate a science debate. 'My friend and I were arguing about what would happen if a bullet got struck by lightning, and we agreed that you should resolve it . . . ' He liked these questions so much that he started up What If. If your cells suddenly lost the power to divide, how long would you survive? How dangerous is it, really, to be in a swimming pool in a thunderstorm? If we hooked turbines to people exercising in gyms, how much power could we produce? What if everyone only had one soulmate?When (if ever) did the sun go down on the British empire? How fast can you hit a speed bump while driving and live?What would happen if the moon went away?In pursuit of answers, Munroe runs computer simulations, pores over stacks of declassified military research memos, solves differential equations, and consults with nuclear reactor operators. His responses are masterpieces of clarity and hilarity, studded with memorable cartoons and infographics. They often predict the complete annihilation of humankind, or at least a really big explosion. Far more than a book for geeks, WHAT IF: Serious Scientific Answers to Absurd Hypothetical Questions explains the laws of science in operation in a way that every intelligent reader will enjoy and feel much the smarter for having read.
Numerical Methods for Scientists and Engineers
Richard Hamming - 1973
Book is unique in its emphasis on the frequency approach and its use in the solution of problems. Contents include: Fundamentals and Algorithms; Polynomial Approximation — Classical Theory; Fourier Approximation — Modern Theory; and Exponential Approximation.
The Calculus Diaries: How Math Can Help You Lose Weight, Win in Vegas, and Survive a Zombie Apocalypse
Jennifer Ouellette - 2010
But then the English-major-turned-award-winning-science-writer had a change of heart and decided to revisit the equations and formulas that had haunted her for years. The Calculus Diaries is the fun and fascinating account of her year spent confronting her math phobia head on. With wit and verve, Ouellette shows how she learned to apply calculus to everything from gas mileage to dieting, from the rides at Disneyland to shooting craps in Vegas-proving that even the mathematically challenged can learn the fundamentals of the universal language.
Calculus
Gilbert Strang - 1991
The author has a direct style. His book presents detailed and intensive explanations. Many diagrams and key examples are used to aid understanding, as well as the application of calculus to physics and engineering and economics. The text is well organized, and it covers single variable and multivariable calculus in depth. An instructor's manual and student guide are available online at http: //ocw.mit.edu/ans7870/resources/Strang/....
How the Brain Learns Mathematics
David A. Sousa - 2007
Sousa discusses the cognitive mechanisms for learning mathematics and the environmental and developmental factors that contribute to mathematics difficulties. This award-winning text examines:Children's innate number sense and how the brain develops an understanding of number relationships Rationales for modifying lessons to meet the developmental learning stages of young children, preadolescents, and adolescents How to plan lessons in PreK-12 mathematics Implications of current research for planning mathematics lessons, including discoveries about memory systems and lesson timing Methods to help elementary and secondary school teachers detect mathematics difficulties Clear connections to the NCTM standards and curriculum focal points
The Unreasonable Effectiveness of Mathematics in the Natural Sciences
Eugene Paul Wigner - 1959
In the paper, Wigner observed that the mathematical structure of a physical theory often points the way to further advances in that theory and even to empirical predictions.
The Shape of a Life: One Mathematician's Search for the Universe's Hidden Geometry
Shing-Tung Yau - 2019
“An unexpectedly intimate look into a highly accomplished man, his colleagues and friends, the development of a new field of geometric analysis, and a glimpse into a truly uncommon mind.”—Nina MacLaughlin,
Boston Globe
“Engaging, eminently readable . . . For those with a taste for elegant and largely jargon-free explanations of mathematics, The Shape of a Life promises hours of rewarding reading.”—Judith Goodstein, American Scientist Harvard geometer and Fields medalist Shing-Tung Yau has provided a mathematical foundation for string theory, offered new insights into black holes, and mathematically demonstrated the stability of our universe. In this autobiography, Yau reflects on his improbable journey to becoming one of the world’s most distinguished mathematicians. Beginning with an impoverished childhood in China and Hong Kong, Yau takes readers through his doctoral studies at Berkeley during the height of the Vietnam War protests, his Fields Medal–winning proof of the Calabi conjecture, his return to China, and his pioneering work in geometric analysis. This new branch of geometry, which Yau built up with his friends and colleagues, has paved the way for solutions to several important and previously intransigent problems. With complicated ideas explained for a broad audience, this book offers readers not only insights into the life of an eminent mathematician, but also an accessible way to understand advanced and highly abstract concepts in mathematics and theoretical physics.