Social Physics: How Good Ideas Spread— The Lessons from a New Science


Alex Pentland - 2014
    Over years of groundbreaking experiments, he has distilled remarkable discoveries significant enough to become the bedrock of a whole new scientific field: social physics. Humans have more in common with bees than we like to admit: We’re social creatures first and foremost. Our most important habits of action—and most basic notions of common sense—are wired into us through our coordination in social groups. Social physics is about idea flow, the way human social networks spread ideas and transform those ideas into behaviors. Thanks to the millions of digital bread crumbs people leave behind via smartphones, GPS devices, and the Internet, the amount of new information we have about human activity is truly profound. Until now, sociologists have depended on limited data sets and surveys that tell us how people say they think and behave, rather than what they actually do. As a result, we’ve been stuck with the same stale social structures—classes, markets—and a focus on individual actors, data snapshots, and steady states. Pentland shows that, in fact, humans respond much more powerfully to social incentives that involve rewarding others and strengthening the ties that bind than incentives that involve only their own economic self-interest. Pentland and his teams have found that they can study patterns of information exchange in a social network without any knowledge of the actual content of the information and predict with stunning accuracy how productive and effective that network is, whether it’s a business or an entire city. We can maximize a group’s collective intelligence to improve performance and use social incentives to create new organizations and guide them through disruptive change in a way that maximizes the good. At every level of interaction, from small groups to large cities, social networks can be tuned to increase exploration and engagement, thus vastly improving idea flow.  Social Physics will change the way we think about how we learn and how our social groups work—and can be made to work better, at every level of society. Pentland leads readers to the edge of the most important revolution in the study of social behavior in a generation, an entirely new way to look at life itself.

Dark Pools: The Rise of Artificially Intelligent Trading Machines and the Looming Threat to Wall Street


Scott Patterson - 2012
    In the beginning was Josh Levine, an idealistic programming genius who dreamed of wresting control of the market from the big exchanges that, again and again, gave the giant institutions an advantage over the little guy. Levine created a computerized trading hub named Island where small traders swapped stocks, and over time his invention morphed into a global electronic stock market that sent trillions in capital through a vast jungle of fiber-optic cables. By then, the market that Levine had sought to fix had turned upside down, birthing secretive exchanges called dark pools and a new species of trading machines that could think, and that seemed, ominously, to be slipping the control of their human masters. Dark Pools is the fascinating story of how global markets have been hijacked by trading robots--many so self-directed that humans can't predict what they'll do next.

Probability And Statistics For Engineers And Scientists


Ronald E. Walpole - 1978
     Offers extensively updated coverage, new problem sets, and chapter-ending material to enhance the book’s relevance to today’s engineers and scientists. Includes new problem sets demonstrating updated applications to engineering as well as biological, physical, and computer science. Emphasizes key ideas as well as the risks and hazards associated with practical application of the material. Includes new material on topics including: difference between discrete and continuous measurements; binary data; quartiles; importance of experimental design; “dummy” variables; rules for expectations and variances of linear functions; Poisson distribution; Weibull and lognormal distributions; central limit theorem, and data plotting. Introduces Bayesian statistics, including its applications to many fields. For those interested in learning more about probability and statistics.

Using Information Technology


Brian K. Williams - 1990
    This text is user-focused and has been highly updated including topics, pictures and examples. The Williams text contains less theory and more application to engage students who might be more familiar with technology. Continually published and updated for over 15 years, Using Information Technology was the first text to foresee and define the impact of digital convergence--the fusion of computers and communications. It was also the first text to acknowledge the new priorities imposed by the Internet and World Wide Web and bring discussion of them from late in the course to the beginning. Today, it is directed toward the "Always On" generation that is at ease with digital technology--comfortable with iPhones, MySpace, Facebook, Twitter, Wikipedia, and the blogosphere--but not always savvy about its processes, possibilities, and liabilities. This 8th edition continues to address the two most significant challenges that instructors face in teaching this course: -Trying to make the course interesting and challenging, and -Trying to teach to students with a variety of computer backgrounds. In addition, this text correlates with Simnet Online for full integration of resources within the Computing Concepts course.

Analyzing the Analyzers


Harlan Harris - 2013
    

The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling


Ralph Kimball - 1996
    Here is a complete library of dimensional modeling techniques-- the most comprehensive collection ever written. Greatly expanded to cover both basic and advanced techniques for optimizing data warehouse design, this second edition to Ralph Kimball's classic guide is more than sixty percent updated.The authors begin with fundamental design recommendations and gradually progress step-by-step through increasingly complex scenarios. Clear-cut guidelines for designing dimensional models are illustrated using real-world data warehouse case studies drawn from a variety of business application areas and industries, including:* Retail sales and e-commerce* Inventory management* Procurement* Order management* Customer relationship management (CRM)* Human resources management* Accounting* Financial services* Telecommunications and utilities* Education* Transportation* Health care and insuranceBy the end of the book, you will have mastered the full range of powerful techniques for designing dimensional databases that are easy to understand and provide fast query response. You will also learn how to create an architected framework that integrates the distributed data warehouse using standardized dimensions and facts.This book is also available as part of the Kimball's Data Warehouse Toolkit Classics Box Set (ISBN: 9780470479575) with the following 3 books:The Data Warehouse Toolkit, 2nd Edition (9780471200246)The Data Warehouse Lifecycle Toolkit, 2nd Edition (9780470149775)The Data Warehouse ETL Toolkit (9780764567575)

Introduction to Computation and Programming Using Python


John V. Guttag - 2013
    It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of "data science" for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (or MOOC) offered by the pioneering MIT--Harvard collaboration edX.Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. The book does not require knowledge of mathematics beyond high school algebra, but does assume that readers are comfortable with rigorous thinking and not intimidated by mathematical concepts. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming.Introduction to Computation and Programming Using Python can serve as a stepping-stone to more advanced computer science courses, or as a basic grounding in computational problem solving for students in other disciplines.

Artificial Intelligence for Humans, Volume 1: Fundamental Algorithms


Jeff Heaton - 2013
    This book teaches basic Artificial Intelligence algorithms such as dimensionality, distance metrics, clustering, error calculation, hill climbing, Nelder Mead, and linear regression. These are not just foundational algorithms for the rest of the series, but are very useful in their own right. The book explains all algorithms using actual numeric calculations that you can perform yourself. Artificial Intelligence for Humans is a book series meant to teach AI to those without an extensive mathematical background. The reader needs only a knowledge of basic college algebra or computer programming—anything more complicated than that is thoroughly explained. Every chapter also includes a programming example. Examples are currently provided in Java, C#, R, Python and C. Other languages planned.

Visualizing Data: Exploring and Explaining Data with the Processing Environment


Ben Fry - 2007
    Using a downloadable programming environment developed by the author, Visualizing Data demonstrates methods for representing data accurately on the Web and elsewhere, complete with user interaction, animation, and more. How do the 3.1 billion A, C, G and T letters of the human genome compare to those of a chimp or a mouse? What do the paths that millions of visitors take through a web site look like? With Visualizing Data, you learn how to answer complex questions like these with thoroughly interactive displays. We're not talking about cookie-cutter charts and graphs. This book teaches you how to design entire interfaces around large, complex data sets with the help of a powerful new design and prototyping tool called "Processing". Used by many researchers and companies to convey specific data in a clear and understandable manner, the Processing beta is available free. With this tool and Visualizing Data as a guide, you'll learn basic visualization principles, how to choose the right kind of display for your purposes, and how to provide interactive features that will bring users to your site over and over. This book teaches you:The seven stages of visualizing data -- acquire, parse, filter, mine, represent, refine, and interact How all data problems begin with a question and end with a narrative construct that provides a clear answer without extraneous details Several example projects with the code to make them work Positive and negative points of each representation discussed. The focus is on customization so that each one best suits what you want to convey about your data set The book does not provide ready-made "visualizations" that can be plugged into any data set. Instead, with chapters divided by types of data rather than types of display, you'll learn how each visualization conveys the unique properties of the data it represents -- why the data was collected, what's interesting about it, and what stories it can tell. Visualizing Data teaches you how to answer questions, not simply display information.

Concepts of Modern Mathematics


Ian Stewart - 1975
    Based on the abstract, general style of mathematical exposition favored by research mathematicians, its goal was to teach students not just to manipulate numbers and formulas, but to grasp the underlying mathematical concepts. The result, at least at first, was a great deal of confusion among teachers, students, and parents. Since then, the negative aspects of "new math" have been eliminated and its positive elements assimilated into classroom instruction.In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts underlying "new math": groups, sets, subsets, topology, Boolean algebra, and more. According to Professor Stewart, an understanding of these concepts offers the best route to grasping the true nature of mathematics, in particular the power, beauty, and utility of pure mathematics. No advanced mathematical background is needed (a smattering of algebra, geometry, and trigonometry is helpful) to follow the author's lucid and thought-provoking discussions of such topics as functions, symmetry, axiomatics, counting, topology, hyperspace, linear algebra, real analysis, probability, computers, applications of modern mathematics, and much more.By the time readers have finished this book, they'll have a much clearer grasp of how modern mathematicians look at figures, functions, and formulas and how a firm grasp of the ideas underlying "new math" leads toward a genuine comprehension of the nature of mathematics itself.

Signals and Systems


Alan V. Oppenheim - 1982
    KEY TOPICS: The major changes of the revision are reorganization of chapter material and the addition of a much wider range of difficulties.

Python 3 Object Oriented Programming


Dusty Phillips - 2010
    Many examples are taken from real-world projects. The book focuses on high-level design as well as the gritty details of the Python syntax. The provided exercises inspire the reader to think about his or her own code, rather than providing solved problems. If you're new to Object Oriented Programming techniques, or if you have basic Python skills and wish to learn in depth how and when to correctly apply Object Oriented Programming in Python, this is the book for you. If you are an object-oriented programmer for other languages, you too will find this book a useful introduction to Python, as it uses terminology you are already familiar with. Python 2 programmers seeking a leg up in the new world of Python 3 will also find the book beneficial, and you need not necessarily know Python 2.

Deep Learning for Coders with Fastai and Pytorch: AI Applications Without a PhD


Jeremy Howard - 2020
    But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications.Authors Jeremy Howard and Sylvain Gugger show you how to train a model on a wide range of tasks using fastai and PyTorch. You'll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes.Train models in computer vision, natural language processing, tabular data, and collaborative filteringLearn the latest deep learning techniques that matter most in practiceImprove accuracy, speed, and reliability by understanding how deep learning models workDiscover how to turn your models into web applicationsImplement deep learning algorithms from scratchConsider the ethical implications of your work

Introduction to Data Mining


Vipin Kumar - 2005
    Each major topic is organized into two chapters, beginning with basic concepts that provide necessary background for understanding each data mining technique, followed by more advanced concepts and algorithms.

Mindstorms: Children, Computers, And Powerful Ideas


Seymour Papert - 1980
    We have Mindstorms to thank for that. In this book, pioneering computer scientist Seymour Papert uses the invention of LOGO, the first child-friendly programming language, to make the case for the value of teaching children with computers. Papert argues that children are more than capable of mastering computers, and that teaching computational processes like de-bugging in the classroom can change the way we learn everything else. He also shows that schools saturated with technology can actually improve socialization and interaction among students and between students and teachers.