Life's Ratchet: How Molecular Machines Extract Order from Chaos


Peter M. Hoffmann - 2012
    But molecules, such as water and sugar, are not alive. So how do our cells--assemblies of otherwise "dead" molecules--come to life, and together constitute a living being? In "Life's Ratchet," physicist Peter M. Hoffmann locates the answer to this age-old question at the nanoscale. The complex molecules of our cells can rightfully be called "molecular machines," or "nanobots"; these machines, unlike any other, work autonomously to create order out of chaos. Tiny electrical motors turn electrical voltage into motion, tiny factories custom-build other molecular machines, and mechanical machines twist, untwist, separate and package strands of DNA. The cell is like a city--an unfathomable, complex collection of molecular worker bees working together to create something greater than themselves. Life, Hoffman argues, emerges from the random motions of atoms filtered through the sophisticated structures of our evolved machinery. We are essentially giant assemblies of interacting nanoscale machines; machines more amazing than can be found in any science fiction novel. Incredibly, the molecular machines in our cells function without a mysterious "life force," nor do they violate any natural laws. Scientists can now prove that life is not supernatural, and that it can be fully understood in the context of science. Part history, part cutting-edge science, part philosophy, "Life's Ratchet" takes us from ancient Greece to the laboratories of modern nanotechnology to tell the story of our quest for the machinery of life.

Why Zebras Don't Get Ulcers


Robert M. Sapolsky - 1993
    Sapolsky's acclaimed and successful Why Zebras Don't Get Ulcers features new chapters on how stress affects sleep and addiction, as well as new insights into anxiety and personality disorder and the impact of spirituality on managing stress.As Sapolsky explains, most of us do not lie awake at night worrying about whether we have leprosy or malaria. Instead, the diseases we fear--and the ones that plague us now--are illnesses brought on by the slow accumulation of damage, such as heart disease and cancer. When we worry or experience stress, our body turns on the same physiological responses that an animal's does, but we do not resolve conflict in the same way--through fighting or fleeing. Over time, this activation of a stress response makes us sick.

Rosalind Franklin and DNA


Anne Sayre - 1975
    In this classic work Anne Sayre, a journalist and close friend of Franklin, puts the record straight.

The Cosmic Serpent: DNA and the Origins of Knowledge


Jeremy Narby - 1998
    This adventure in science and imagination, which the Medical Tribune said might herald "a Copernican revolution for the life sciences," leads the reader through unexplored jungles and uncharted aspects of mind to the heart of knowledge.In a first-person narrative of scientific discovery that opens new perspectives on biology, anthropology, and the limits of rationalism, The Cosmic Serpent reveals how startlingly different the world around us appears when we open our minds to it.

Other Minds: The Octopus, the Sea, and the Deep Origins of Consciousness


Peter Godfrey-Smith - 2016
    In captivity, octopuses have been known to identify individual human keepers, raid neighboring tanks for food, turn off lightbulbs by spouting jets of water, plug drains, and make daring escapes. How is it that a creature with such gifts evolved through an evolutionary lineage so radically distant from our own? What does it mean that evolution built minds not once but at least twice? The octopus is the closest we will come to meeting an intelligent alien. What can we learn from the encounter?In Other Minds, Peter Godfrey-Smith, a distinguished philosopher of science and a skilled scuba diver, tells a bold new story of how subjective experience crept into being—how nature became aware of itself. As Godfrey-Smith stresses, it is a story that largely occurs in the ocean, where animals first appeared. Tracking the mind’s fitful development, Godfrey-Smith shows how unruly clumps of seaborne cells began living together and became capable of sensing, acting, and signaling. As these primitive organisms became more entangled with others, they grew more complicated. The first nervous systems evolved, probably in ancient relatives of jellyfish; later on, the cephalopods, which began as inconspicuous mollusks, abandoned their shells and rose above the ocean floor, searching for prey and acquiring the greater intelligence needed to do so. Taking an independent route, mammals and birds later began their own evolutionary journeys.But what kind of intelligence do cephalopods possess? Drawing on the latest scientific research and his own scuba-diving adventures, Godfrey-Smith probes the many mysteries that surround the lineage. How did the octopus, a solitary creature with little social life, become so smart? What is it like to have eight tentacles that are so packed with neurons that they virtually “think for themselves”? What happens when some octopuses abandon their hermit-like ways and congregate, as they do in a unique location off the coast of Australia?By tracing the question of inner life back to its roots and comparing human beings with our most remarkable animal relatives, Godfrey-Smith casts crucial new light on the octopus mind—and on our own.

Chance and Necessity: An Essay on the Natural Philosophy of Modern Biology


Jacques Monod - 1970
    Chance and Necessity is a philosophical statement whose intention is to sweep away as both false and dangerous the animist conception of man that has dominated virtually all Western worldviews from primitive cultures to those of dialectical materialists. He bases his argument on the evidence of modern biology, which indisputably shows, that man is the product of chance genetic mutation. With the unrelenting logic of the scientist, he draws upon what we now know (and can theorize) of genetic structure to suggest an new way of looking at ourselves. He argues that objective scientific knowledge, the only reliable knowledge, denies the concepts of destiny or evolutionary purpose that underlie traditional philosophies. He contends that the persistence of those concepts is responsible for the intensifying schizophrenia of a world that accepts, and lives by, the fruits of science while refusing to face its moral implications. Dismissing as "animist" not only Plato, Hegel, Bergson and Teilhard de Chardin but Spencer and Marx as well, he calls for a new ethic that will recognize the distinction between objective knowledge and the realm of values--an ethic of knowledge that can, perhaps, save us from our deepening spiritual malaise, from the new age of darkness he sees coming.PrefaceOf strange objects Vitalisms and animisms Maxwell's demons Microscopic cyberneticsMolecular ontogenesis Invariance and perturbationsEvolution The frontiers The kingdom and the darknessAppendixes

Innate: How the Wiring of Our Brains Shapes Who We Are


Kevin J. Mitchell - 2018
    Guiding us through important new research, including his own groundbreaking work, he explains how variations in the way our brains develop before birth strongly influence our psychology and behavior throughout our lives, shaping our personality, intelligence, sexuality, and even the way we perceive the world.We all share a genetic program for making a human brain, and the program for making a brain like yours is specifically encoded in your DNA. But, as Mitchell explains, the way that program plays out is affected by random processes of development that manifest uniquely in each person, even identical twins. The key insight of Innate is that the combination of these developmental and genetic variations creates innate differences in how our brains are wired--differences that impact all aspects of our psychology--and this insight promises to transform the way we see the interplay of nature and nurture.Innate also explores the genetic and neural underpinnings of disorders such as autism, schizophrenia, and epilepsy, and how our understanding of these conditions is being revolutionized. In addition, the book examines the social and ethical implications of these ideas and of new technologies that may soon offer the means to predict or manipulate human traits.

Dawkins vs Gould: Survival of the Fittest


Kim Sterelny - 2001
    Science has seen its fair share of punch-ups over the years, but one debate, in the field of biology, has become notorious for its intensity. Over the last twenty years, Richard Dawkins and Stephen Jay Gould have engaged in a savage battle over evolution, which continues to rage even after Gould's death in 2002. Kim Sterelny moves beyond caricature to expose the real differences between the conceptions of evolution of these two leading scientists. He shows that the conflict extends beyond evolution to their very beliefs in science itself; and, in Gould?s case, to domains in which science plays no role at all.

Biology as Ideology: The Doctrine of DNA


Richard C. Lewontin - 1991
    Following in the fashion of Stephen Jay Gould and Peter Medawar, one of the world's leading scientists examines how "pure science" is in fact shaped and guided by social and political needs and assumptions.

Who We Are and How We Got Here: Ancient DNA and the New Science of the Human Past


David Reich - 2018
    Now, in The New Science of the Human Past, Reich describes just how the human genome provides not only all the information that a fertilized human egg needs to develop but also contains within it the history of our species. He delineates how the Genomic Revolution and ancient DNA are transforming our understanding of our own lineage as modern humans; how genomics deconstructs the idea that there are no biologically meaningful differences among human populations (though without adherence to pernicious racist hierarchies); and how DNA studies reveal the deep history of human inequality--among different populations, between the sexes, and among individuals within a population.

Microcosmos: Four Billion Years of Microbial Evolution


Lynn Margulis - 1986
    Margulis to create a vivid new picture of the world that is crucial to our understanding of the future of the planet. Addressed to general readers, the book provides a beautifully written view of evolution as a process based on interdependency and the interconnectedness of all life on the planet.

The Quark and the Jaguar: Adventures in the Simple and the Complex


Murray Gell-Mann - 1994
    Nobel laureate Murray Gell-Mann offers a uniquely personal and unifying vision of the relationship between the fundamental laws of physics and the complexity and diversity of the natural world.

The Tree of Knowledge: The Biological Roots of Human Understanding


Humberto R. Maturana - 1984
    Its authors present a new view of cognition that has important social and ethical implications, for, they assert, the only world we humans can have is the one we create together through the actions of our coexistence. Written for a general audience as well as for students, scholars, and scientists and abundantly illustrated with examples from biology, linguistics, and new social and cultural phenomena, this revised edition includes a new afterword by Dr. Varela, in which he discusses the effect the book has had in the years since its first publication.

The God Particle: If the Universe Is the Answer, What Is the Question?


Leon M. Lederman - 1993
    The book takes us from the Greeks' earliest scientific observations through Einstein and beyond in an inspiring celebration of human curiosity. It ends with the quest for the Higgs boson, nicknamed the God Particle, which scientists hypothesize will help unlock the last secrets of the subatomic universe. With a new preface by Lederman, The God Particle will leave you marveling at our continuing pursuit of the infinitesimal.

What Is Life?: How Chemistry Becomes Biology


Addy Pross - 2012
    So how does chemistry give rise to biology? What could have led the first replicating molecules up such a path? Now, developments in the emerging field of 'systems chemistry' are unlocking the problem. Addy Pross shows how the different kind of stability that operates among replicating molecules results in a tendency for chemical systems to become more complex and acquire the properties of life. Strikingly, he demonstrates that Darwinian evolution is the biological expression of a deeper, well-defined chemical concept: the whole story from replicating molecules to complex life is one continuous process governed by an underlying physical principle. The gulf between biology and the physical sciences is finally becoming bridged.