Big Data: A Revolution That Will Transform How We Live, Work, and Think


Viktor Mayer-Schönberger - 2013
    “Big data” refers to our burgeoning ability to crunch vast collections of information, analyze it instantly, and draw sometimes profoundly surprising conclusions from it. This emerging science can translate myriad phenomena—from the price of airline tickets to the text of millions of books—into searchable form, and uses our increasing computing power to unearth epiphanies that we never could have seen before. A revolution on par with the Internet or perhaps even the printing press, big data will change the way we think about business, health, politics, education, and innovation in the years to come. It also poses fresh threats, from the inevitable end of privacy as we know it to the prospect of being penalized for things we haven’t even done yet, based on big data’s ability to predict our future behavior.In this brilliantly clear, often surprising work, two leading experts explain what big data is, how it will change our lives, and what we can do to protect ourselves from its hazards. Big Data is the first big book about the next big thing.www.big-data-book.com

Statistics for Dummies


Deborah J. Rumsey - 2003
    . ." and "The data bear this out. . . ." But the field of statistics is not just about data. Statistics is the entire process involved in gathering evidence to answer questions about the world, in cases where that evidence happens to be numerical data. Statistics For Dummies is for everyone who wants to sort through and evaluate the incredible amount of statistical information that comes to them on a daily basis. (You know the stuff: charts, graphs, tables, as well as headlines that talk about the results of the latest poll, survey, experiment, or other scientific study.) This book arms you with the ability to decipher and make important decisions about statistical results, being ever aware of the ways in which people can mislead you with statistics. Get the inside scoop on number-crunching nuances, plus insight into how you canDetermine the odds Calculate a standard score Find the margin of error Recognize the impact of polls Establish criteria for a good survey Make informed decisions about experiments This down-to-earth reference is chock-full of real examples from real sources that are relevant to your everyday life: from the latest medical breakthroughs, crime studies, and population trends to surveys on Internet dating, cell phone use, and the worst cars of the millennium. Statistics For Dummies departs from traditional statistics texts, references, supplement books, and study guides in the following ways:Practical and intuitive explanations of statistical concepts, ideas, techniques, formulas, and calculations. Clear and concise step-by-step procedures that intuitively explain how to work through statistics problems. Upfront and honest answers to your questions like, "What does this really mean?" and "When and how I will ever use this?" Chances are, Statistics For Dummies will be your No. 1 resource for discovering how numerical data figures into your corner of the universe.

How to Buy Your First Home (And How to Sell it Too)


Phil Spencer - 2011
    Breaking everything down into simple and achievable steps, he makes this daunting process easy. Learn how to:- Find your perfect pad- Choose which mortgage is right for you- Negotiate with estate agents and sellers- Organise exchange and completion Including indispensable advice, money-saving tips and an essential trouble-shooting section, this guide covers everything a first-time buyer needs to know. And when it's time to move on again, this book will show you how to sell your home too.Phil Spencer is one the best-known faces on British television, co-presenting the hit Channel 4 series Location, Location, Location and Relocation, Relocation. Phil has written regularly columns in The Sunday Times and Country Life, and is contracted to Archant publishing to write columns that are syndicated in the group's numerous local glossy magazines which are distributed nationwide. Recent TV appearances include on The One Show, Children in Need and The Friday Night Project, and Phil also regularly appears on the radio to discuss property issues.

Designing Clinical Research


Stephen B. Hulley - 1988
    This edition incorporates current research methodology—including molecular and genetic clinical research—and offers an updated syllabus for conducting a clinical research workshop.Emphasis is on common sense as the main ingredient of good science. The book explains how to choose well-focused research questions and details the steps through all the elements of study design, data collection, quality assurance, and basic grant-writing. All chapters have been thoroughly revised, updated, and made more user-friendly.

The Cartoon Guide to Statistics


Larry Gonick - 1993
    Never again will you order the Poisson Distribution in a French restaurant!This updated version features all new material.

Bayesian Statistics the Fun Way: Understanding Statistics and Probability with Star Wars, Lego, and Rubber Ducks


Will Kurt - 2019
    But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that.This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples.By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you'll learn real skills, like how to:- How to measure your own level of uncertainty in a conclusion or belief- Calculate Bayes theorem and understand what it's useful for- Find the posterior, likelihood, and prior to check the accuracy of your conclusions- Calculate distributions to see the range of your data- Compare hypotheses and draw reliable conclusions from themNext time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.

Fifty Challenging Problems in Probability with Solutions


Frederick Mosteller - 1965
    Selected for originality, general interest, or because they demonstrate valuable techniques, the problems are ideal as a supplement to courses in probability or statistics, or as stimulating recreation for the mathematically minded. Detailed solutions. Illustrated.

Superforecasting: The Art and Science of Prediction


Philip E. Tetlock - 2015
    Unfortunately, people tend to be terrible forecasters. As Wharton professor Philip Tetlock showed in a landmark 2005 study, even experts’ predictions are only slightly better than chance. However, an important and underreported conclusion of that study was that some experts do have real foresight, and Tetlock has spent the past decade trying to figure out why. What makes some people so good? And can this talent be taught?   In Superforecasting, Tetlock and coauthor Dan Gardner offer a masterwork on prediction, drawing on decades of research and the results of a massive, government-funded forecasting tournament. The Good Judgment Project involves tens of thousands of ordinary people—including a Brooklyn filmmaker, a retired pipe installer, and a former ballroom dancer—who set out to forecast global events. Some of the volunteers have turned out to be astonishingly good. They’ve beaten other benchmarks, competitors, and prediction markets. They’ve even beaten the collective judgment of intelligence analysts with access to classified information. They are "superforecasters."   In this groundbreaking and accessible book, Tetlock and Gardner show us how we can learn from this elite group. Weaving together stories of forecasting successes (the raid on Osama bin Laden’s compound) and failures (the Bay of Pigs) and interviews with a range of high-level decision makers, from David Petraeus to Robert Rubin, they show that good forecasting doesn’t require powerful computers or arcane methods. It involves gathering evidence from a variety of sources, thinking probabilistically, working in teams, keeping score, and being willing to admit error and change course. Superforecasting offers the first demonstrably effective way to improve our ability to predict the future—whether in business, finance, politics, international affairs, or daily life—and is destined to become a modern classic.

R for Dummies


Joris Meys - 2012
    R is packed with powerful programming capabilities, but learning to use R in the real world can be overwhelming for even the most seasoned statisticians. This easy-to-follow guide explains how to use R for data processing and statistical analysis, and then, shows you how to present your data using compelling and informative graphics. You'll gain practical experience using R in a variety of settings and delve deeper into R's feature-rich toolset.Includes tips for the initial installation of RDemonstrates how to easily perform calculations on vectors, arrays, and lists of dataShows how to effectively visualize data using R's powerful graphics packagesGives pointers on how to find, install, and use add-on packages created by the R communityProvides tips on getting additional help from R mailing lists and websitesWhether you're just starting out with statistical analysis or are a procedural programming pro, "R For Dummies" is the book you need to get the most out of R.

Psychological Testing: Principles, Applications, and Issues


Robert M. Kaplan - 1982
    Robert Kaplan and Dennis Saccuzzo provide students with a current analysis of the most widely used psychological tests in schools, professional training programs, business, industry, the military, and clinical settings. The authors offer a clear picture of how psychological tests are constructed, how they are used, and how an understanding of them can make a difference in their careers and everyday lives. Comprehensive and accurate, yet interesting and personally relevant, this book gets and keeps students' attention through the use of informal discussions and real-life examples.

The Elements of Statistical Learning: Data Mining, Inference, and Prediction


Trevor Hastie - 2001
    With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.

Statistical Methods for the Social Sciences


Alan Agresti - 1986
    No previous knowledge of statistics is assumed, and mathematical background is assumed to be minimal (lowest-level high-school algebra). This text may be used in a one or two course sequence. Such sequences are commonly required of social science graduate students in sociology, political science, and psychology. Students in geography, anthropology, journalism, and speech also are sometimes required to take at least one statistics course.

Artificial Unintelligence: How Computers Misunderstand the World


Meredith Broussard - 2018
    We are so eager to do everything digitally--hiring, driving, paying bills, even choosing romantic partners--that we have stopped demanding that our technology actually work. Broussard, a software developer and journalist, reminds us that there are fundamental limits to what we can (and should) do with technology. With this book, she offers a guide to understanding the inner workings and outer limits of technology--and issues a warning that we should never assume that computers always get things right.Making a case against technochauvinism--the belief that technology is always the solution--Broussard argues that it's just not true that social problems would inevitably retreat before a digitally enabled Utopia. To prove her point, she undertakes a series of adventures in computer programming. She goes for an alarming ride in a driverless car, concluding "the cyborg future is not coming any time soon"; uses artificial intelligence to investigate why students can't pass standardized tests; deploys machine learning to predict which passengers survived the Titanic disaster; and attempts to repair the U.S. campaign finance system by building AI software. If we understand the limits of what we can do with technology, Broussard tells us, we can make better choices about what we should do with it to make the world better for everyone.

Statistics for People Who (Think They) Hate Statistics


Neil J. Salkind - 2000
    The book begins with an introduction to the language of statistics and then covers descriptive statistics and inferential statistics. Throughout, the author offers readers:- Difficulty Rating Index for each chapter′s material- Tips for doing and thinking about a statistical technique- Top tens for everything from the best ways to create a graph to the most effective techniques for data collection- Steps that break techniques down into a clear sequence of procedures- SPSS tips for executing each major statistical technique- Practice exercises at the end of each chapter, followed by worked out solutions.The book concludes with a statistical software sampler and a description of the best Internet sites for statistical information and data resources. Readers also have access to a website for downloading data that they can use to practice additional exercises from the book. Students and researchers will appreciate the book′s unhurried pace and thorough, friendly presentation.

The Visual Display of Quantitative Information


Edward R. Tufte - 1983
    Theory and practice in the design of data graphics, 250 illustrations of the best (and a few of the worst) statistical graphics, with detailed analysis of how to display data for precise, effective, quick analysis. Design of the high-resolution displays, small multiples. Editing and improving graphics. The data-ink ratio. Time-series, relational graphics, data maps, multivariate designs. Detection of graphical deception: design variation vs. data variation. Sources of deception. Aesthetics and data graphical displays. This is the second edition of The Visual Display of Quantitative Information. Recently published, this new edition provides excellent color reproductions of the many graphics of William Playfair, adds color to other images, and includes all the changes and corrections accumulated during 17 printings of the first edition.