Physical Chemistry: A Molecular Approach


Donald A. McQuarrie - 1997
    It covers all relevant areas, including molecular spectroscopy, electronic structure computations, molecular beam methods and time-resolved measurements of chemical systems.

Astronomy: A Beginner's Guide to the Universe


Eric Chaisson - 1995
    Astronomy: A Beginner's Guide to the Universe.

Lives of the Planets: A Natural History of the Solar System


Richard Corfield - 2007
    Planetary science has mainly been a descriptive science, but it is becoming increasingly experimental. The space probes that went up between the 1960s and 1990s were primarily generalists-they collected massive amounts of information so that scientists could learn what questions to pursue. But recent missions have become more focused: Scientists know better what information they want and how to collect it. Even now probes are on their way to Mercury, Venus, Mars, and Pluto, with Europa-one of Jupiter's moons-on the agenda. In a sweeping look into the manifold objects inhabiting the depths of space, Lives of the Planets delves into the mythology and the knowledge humanity has built over the ages. Placing our current understanding in historical context, Richard Corfield explores the seismic shifts in planetary astronomy and probes why we must change our perspective of our place in the universe. In our era of extraordinary discovery, this is the first comprehensive survey of this new understanding and the history of how we got here.

Who Got Einstein's Office? Eccentricity and Genius at the Institute for Advanced Study


Ed Regis - 1987
    Robert Oppenheimer rode out his political persecution in the Director's mansion. It is the Institute for Advanced Study in Princeton, New Jersey; at one time or another, home to fourteen Nobel laureates, most of the great physicists and mathematicians of the modern era, and two of the most exciting developments in twentieth-century science—cellular automata and superstrings.Who Got Einstein's Office? tells for the first time the story of this secretive institution and of its fascinating personalities.

The Space Book: From the Beginning to the End of Time, 250 Milestones in the History of Space Astronomy


Jim Bell - 2013
    Beautiful photographs or illustrations accompany each entry. Open the book to any page to discover some new wonder or mystery about the Universe around us.

The Hunt for Vulcan: ...And How Albert Einstein Destroyed a Planet, Discovered Relativity, and Deciphered the Universe


Thomas Levenson - 2015
    November 2015 is the 100th anniversary of Einstein’s discovery of the General Theory of Relativity.Levenson, head of MIT’s Science Writing Program, tells the captivating, unusual, and nearly-forgotten backstory behind Einstein’s invention of the Theory of Relativity, which completely changed the course of science forever. For over 50 years before Einstein developed his theory, the world’s top astronomers spent countless hours and energy searching for a planet, which came to be named Vulcan, that had to exist, it was thought, given Isaac Newton’s theories of gravity. Indeed, in the two centuries since Newton’s death, his theory had essentially become accepted as fact. It took Einstein’s genius to realize the mystery of the missing planet wasn’t a problem of measurements or math but of Newton’s theory of gravity itself. Einstein’s Theory of Relativity proved that Vulcan did not and could not exist, and that the decades-long search for it had merely been a quirk of operating under the wrong set of assumptions about the universe. Thomas Levenson tells this unique story, one of the strangest episodes in the history of science, with elegant simplicity, fast-paced drama, and lively characters sure to capture the attention of a wide group of readers.

Our Mathematical Universe: My Quest for the Ultimate Nature of Reality


Max Tegmark - 2012
    Our Big Bang, our distant future, parallel worlds, the sub-atomic and intergalactic - none of them are what they seem. But there is a way to understand this immense strangeness - mathematics. Seeking an answer to the fundamental puzzle of why our universe seems so mathematical, Tegmark proposes a radical idea: that our physical world not only is described by mathematics, but that it is mathematics. This may offer answers to our deepest questions: How large is reality? What is everything made of? Why is our universe the way it is?Table of ContentsPreface 1 What Is Reality? Not What It Seems • What’s the Ultimate Question? • The Journey Begins Part One: Zooming Out 2 Our Place in Space Cosmic Questions • How Big Is Space? • The Size of Earth • Distance to the Moon • Distance to the Sun and the Planets • Distance to the Stars • Distance to the Galaxies • What Is Space? 3 Our Place in TimeWhere Did Our Solar System Come From? • Where Did theGalaxies Come From? • Where Did the Mysterious MicrowavesCome From? • Where Did the Atoms Come From? 4 Our Universe by NumbersWanted: Precision Cosmology • Precision Microwave-Background Fluctuations • Precision Galaxy Clustering • The Ultimate Map of Our Universe • Where Did Our Big Bang Come From? 5 Our Cosmic Origins What’s Wrong with Our Big Bang? • How Inflation Works • The Gift That Keeps on Giving • Eternal Inflation 6 Welcome to the Multiverse The Level I Multiverse • The Level II Multiverse • Multiverse Halftime Roundup Part Two: Zooming In 7 Cosmic Legos Atomic Legos • Nuclear Legos • Particle-Physics Legos • Mathematical Legos • Photon Legos • Above the Law? • Quanta and Rainbows • Making Waves • Quantum Weirdness • The Collapse of Consensus • The Weirdness Can’t Be Confined • Quantum Confusion 8 The Level III Multiverse The Level III Multiverse • The Illusion of Randomness • Quantum Censorship • The Joys of Getting Scooped • Why Your Brain Isn’t a Quantum Computer • Subject, Object and Environment • Quantum Suicide • Quantum Immortality? • Multiverses Unified • Shifting Views: Many Worlds or Many Words? Part Three: Stepping Back 9 Internal Reality, External Reality and Consensus Reality External Reality and Internal Reality • The Truth, the Whole Truth and Nothing but the Truth • Consensus Reality • Physics: Linking External to Consensus Reality 10 Physical Reality and Mathematical Reality Math, Math Everywhere! • The Mathematical Universe Hypothesis • What Is a Mathematical Structure? 11 Is Time an Illusion? How Can Physical Reality Be Mathematical? • What Are You? • Where Are You? (And What Do You Perceive?) • When Are You? 12 The Level IV Multiverse Why I Believe in the Level IV Multiverse • Exploring the Level IV Multiverse: What’s Out There? • Implications of the Level IV Multiverse • Are We Living in a Simulation? • Relation Between the MUH, the Level IV Multiverse and Other Hypotheses •Testing the Level IV Multiverse 13 Life, Our Universe and Everything How Big Is Our Physical Reality? • The Future of Physics • The Future of Our Universe—How Will It End? • The Future of Life •The Future of You—Are You Insignificant? Acknowledgments Suggestions for Further Reading Index

Stuff Matters: Exploring the Marvelous Materials That Shape Our Man-Made World


Mark Miodownik - 2013
    Why is glass see-through? What makes elastic stretchy? Why does a paper clip bend? Why does any material look and behave the way it does? These are the sorts of questions that Mark Miodownik a globally-renowned materials scientist has spent his life exploring In this book he examines the materials he encounters in a typical morning, from the steel in his razor and the graphite in his pencil to the foam in his sneakers and the concrete in a nearby skyscraper.

We Have No Idea: A Guide to the Unknown Universe


Jorge Cham - 2017
    While they're at it, they helpfully demystify many complicated things we do know about, from quarks and neutrinos to gravitational waves and exploding black holes. With equal doses of humor and delight, they invite us to see the universe as a vast expanse of mostly uncharted territory that's still ours to explore.This entertaining illustrated science primer is the perfect book for anyone who's curious about all the big questions physicists are still trying to answer.

Albert Einstein: And the Frontiers of Physics


Jeremy Bernstein - 1995
    They found him a dreamy child without an especially promising future. But some time in his early years he developed what he called wonder about the world. Later in life, he remembered two instances from his childhood--his fascination at age five with a compass and his introduction to the lucidity and certainty of geometry--that may have been the first signs of what was to come. From these ordinary beginnings, Einstein became one of the greatest scientific thinkers of all time. This illuminating biography describes in understandable language the experiments and revolutionary theories that flowed from Einstein's imagination and intellect--from his theory of relativity, which changed our conception of the universe and our place in it, to his search for a unified field theory that would explain all of the forces in the universe.

A First Course in Abstract Algebra


John B. Fraleigh - 1967
    Focused on groups, rings and fields, this text gives students a firm foundation for more specialized work by emphasizing an understanding of the nature of algebraic structures. KEY TOPICS: Sets and Relations; GROUPS AND SUBGROUPS; Introduction and Examples; Binary Operations; Isomorphic Binary Structures; Groups; Subgroups; Cyclic Groups; Generators and Cayley Digraphs; PERMUTATIONS, COSETS, AND DIRECT PRODUCTS; Groups of Permutations; Orbits, Cycles, and the Alternating Groups; Cosets and the Theorem of Lagrange; Direct Products and Finitely Generated Abelian Groups; Plane Isometries; HOMOMORPHISMS AND FACTOR GROUPS; Homomorphisms; Factor Groups; Factor-Group Computations and Simple Groups; Group Action on a Set; Applications of G-Sets to Counting; RINGS AND FIELDS; Rings and Fields; Integral Domains; Fermat's and Euler's Theorems; The Field of Quotients of an Integral Domain; Rings of Polynomials; Factorization of Polynomials over a Field; Noncommutative Examples; Ordered Rings and Fields; IDEALS AND FACTOR RINGS; Homomorphisms and Factor Rings; Prime and Maximal Ideas; Gr�bner Bases for Ideals; EXTENSION FIELDS; Introduction to Extension Fields; Vector Spaces; Algebraic Extensions; Geometric Constructions; Finite Fields; ADVANCED GROUP THEORY; Isomorphism Theorems; Series of Groups; Sylow Theorems; Applications of the Sylow Theory; Free Abelian Groups; Free Groups; Group Presentations; GROUPS IN TOPOLOGY; Simplicial Complexes and Homology Groups; Computations of Homology Groups; More Homology Computations and Applications; Homological Algebra; Factorization; Unique Factorization Domains; Euclidean Domains; Gaussian Integers and Multiplicative Norms; AUTOMORPHISMS AND GALOIS THEORY; Automorphisms of Fields; The Isomorphism Extension Theorem; Splitting Fields; Separable Extensions; Totally Inseparable Extensions; Galois Theory; Illustrations of Galois Theory; Cyclotomic Extensions; Insolvability of the Quintic; Matrix Algebra MARKET: For all readers interested in abstract algebra.

Physics Demystified: A Self-Teaching Guide (Demystified)


Stan Gibilisco - 2002
    In "Physics Demystified" best-selling author Stan Gibilisco offers a fun, effective, and totally painless way to learn the fundamentals and general concepts of physics.With "Physics Demystified" you master the subject one simple step at a time – at your own speed. Unlike most books on physics, general principles are presented first – and the details follow. In order to make the learning process as clear and simple as possible, heavy-duty math, formulas, and equations are kept to a minimum. This unique self-teaching guide offers questions at the end of each chapter and section to pinpoint weaknesses, and a 100-question final exam to reinforce the entire book.Simple enough for a beginner but challenging enough for an advanced student, "Physics Demystified" is your direct route to learning or brushing up on physics.HERE’S EVERYTHING YOU NEED TO: * Understand the math used in physical science* Solve mass/force/acceleration problems* Create mathematical models of physical phenomena* Perform distance vs. time calculations* Determine potential and kinetic energy* Calculate the wavelength of sounds and radio signals* Understand visible light interference patterns* Calculate the energy and frequency of a moving particle* Understand atomic structure* Learn about electric current, voltage, resistance, power, and energy

The Little Book of Scientific Principles, Theories and Things


Surendra Verma - 2005
    It features all the great names in science, including Pythagoras, Galileo, Newton, Darwin, and Einstein, as well as more recent contributors such as Rachel Carson, James Lovelock, and Stephen Hawking.This little book presents serious science simply, answering questions like:What is Pythagorean Theorem? What is the difference between circadian rhythms and the popular concept of biorhythms? What is Hawking’s Black Hole Theory? Who developed the World Wide Web?

A Question of Time: The Ultimate Paradox


Scientific American - 2012
    

Math with Bad Drawings


Ben Orlin - 2018
     In MATH WITH BAD DRAWINGS, Ben Orlin answers math's three big questions: Why do I need to learn this? When am I ever going to use it? Why is it so hard? The answers come in various forms-cartoons, drawings, jokes, and the stories and insights of an empathetic teacher who believes that math should belong to everyone.Eschewing the tired old curriculum that begins in the wading pool of addition and subtraction and progresses to the shark infested waters of calculus (AKA the Great Weed Out Course), Orlin instead shows us how to think like a mathematician by teaching us a new game of Tic-Tac-Toe, how to understand an economic crisis by rolling a pair of dice, and the mathematical reason why you should never buy a second lottery ticket. Every example in the book is illustrated with his trademark "bad drawings," which convey both his humor and his message with perfect pitch and clarity. Organized by unconventional but compelling topics such as "Statistics: The Fine Art of Honest Lying," "Design: The Geometry of Stuff That Works," and "Probability: The Mathematics of Maybe," MATH WITH BAD DRAWINGS is a perfect read for fans of illustrated popular science.