Book picks similar to
Excel 2010 Power Programming w by John Walkenbach
reference
programming
non-fiction
excel
Think Like a Programmer: An Introduction to Creative Problem Solving
V. Anton Spraul - 2012
In this one-of-a-kind text, author V. Anton Spraul breaks down the ways that programmers solve problems and teaches you what other introductory books often ignore: how to Think Like a Programmer. Each chapter tackles a single programming concept, like classes, pointers, and recursion, and open-ended exercises throughout challenge you to apply your knowledge. You'll also learn how to:Split problems into discrete components to make them easier to solve Make the most of code reuse with functions, classes, and libraries Pick the perfect data structure for a particular job Master more advanced programming tools like recursion and dynamic memory Organize your thoughts and develop strategies to tackle particular types of problems Although the book's examples are written in C++, the creative problem-solving concepts they illustrate go beyond any particular language; in fact, they often reach outside the realm of computer science. As the most skillful programmers know, writing great code is a creative art—and the first step in creating your masterpiece is learning to Think Like a Programmer.
Deep Learning
Ian Goodfellow - 2016
Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Coders: The Making of a New Tribe and the Remaking of the World
Clive Thompson - 2019
And this may sound weirdly obvious, but every single one of those pieces of software was written by a programmer. Programmers are thus among the most quietly influential people on the planet. As we live in a world made of software, they're the architects. The decisions they make guide our behavior. When they make something newly easy to do, we do a lot more of it. If they make it hard or impossible to do something, we do less of it.If we want to understand how today's world works, we ought to understand something about coders. Who exactly are the people that are building today's world? What makes them tick? What type of personality is drawn to writing software? And perhaps most interestingly -- what does it do to them?One of the first pieces of coding a newbie learns is the program to make the computer say "Hello, world!" Like that piece of code, Clive Thompson's book is a delightful place to begin to understand this vocation, which is both a profession and a way of life, and which essentially didn't exist little more than a generation ago, but now is considered just about the only safe bet we can make about what the future holds. Thompson takes us close to some of the great coders of our time, and unpacks the surprising history of the field, beginning with the first great coders, who were women. Ironically, if we're going to traffic in stereotypes, women are arguably "naturally" better at coding than men, but they were written out of the history, and shoved out of the seats, for reasons that are illuminating. Now programming is indeed, if not a pure brotopia, at least an awfully homogenous community, which attracts people from a very narrow band of backgrounds and personality types. As Thompson learns, the consequences of that are significant - not least being a fetish for disruption at scale that doesn't leave much time for pondering larger moral issues of collateral damage. At the same time, coding is a marvelous new art form that has improved the world in innumerable ways, and Thompson reckons deeply, as no one before him has, with what great coding in fact looks like, who creates it, and where they come from. To get as close to his subject has he can, he picks up the thread of his own long-abandoned coding practice, and tries his mightiest to up his game, with some surprising results.More and more, any serious engagement with the world demands an engagement with code and its consequences, and to understand code, we must understand coders. In that regard, Clive Thompson's Hello, World! is a marvelous and delightful master class.
Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists
Philipp K. Janert - 2010
With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications.Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you.Use graphics to describe data with one, two, or dozens of variablesDevelop conceptual models using back-of-the-envelope calculations, as well asscaling and probability argumentsMine data with computationally intensive methods such as simulation and clusteringMake your conclusions understandable through reports, dashboards, and other metrics programsUnderstand financial calculations, including the time-value of moneyUse dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situationsBecome familiar with different open source programming environments for data analysisFinally, a concise reference for understanding how to conquer piles of data.--Austin King, Senior Web Developer, MozillaAn indispensable text for aspiring data scientists.--Michael E. Driscoll, CEO/Founder, Dataspora
An Introduction to Statistical Learning: With Applications in R
Gareth James - 2013
This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
A Guide to the Project Management Body of Knowledge (PMBOK® Guide)
Project Management Institute - 1995
This internationally recognized standard provides the essential tools to practice project management and deliver organizational results.
Computer Networks
Andrew S. Tanenbaum - 1981
In this revision, the author takes a structured approach to explaining how networks function.
Doing Data Science
Cathy O'Neil - 2013
But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know.In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science.Topics include:Statistical inference, exploratory data analysis, and the data science processAlgorithmsSpam filters, Naive Bayes, and data wranglingLogistic regressionFinancial modelingRecommendation engines and causalityData visualizationSocial networks and data journalismData engineering, MapReduce, Pregel, and HadoopDoing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.
Managing the Testing Process: Practical Tools and Techniques for Managing Hardware and Software Testing
Rex Black - 1999
The preeminent expert in his field, Mr.Black draws upon years of experience as president of both theInternational and American Software Testing Qualifications boardsto offer this extensive resource of all the standards, methods, andtools you'll need.The book covers core testing concepts and thoroughly examinesthe best test management practices and tools of leading hardwareand software vendors. Step-by-step guidelines and real-worldscenarios help you follow all necessary processes and avoidmistakes.Producing high-quality computer hardware and software requirescareful, professional testing; Managing the Testing Process, Third Edition explains how to achieve that by following adisciplined set of carefully managed and monitored practices andprocessesThe book covers all standards, methods, and tools you need forprojects large and smallPresents the business case for testing products and reviews theauthor's latest test assessmentsTopics include agile testing methods, risk-based testing, IEEEstandards, ISTQB certification, distributed and outsourced testing, and moreOver 100 pages of new material and case studies have been addedto this new editionIf you're responsible for managing testing in the real world, Managing the Testing Process, Third Edition is the valuablereference and guide you need.
Natural Language Processing with Python
Steven Bird - 2009
With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication.Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligenceThis book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.
Interactive Data Visualization for the Web
Scott Murray - 2013
It’s easy and fun with this practical, hands-on introduction. Author Scott Murray teaches you the fundamental concepts and methods of D3, a JavaScript library that lets you express data visually in a web browser. Along the way, you’ll expand your web programming skills, using tools such as HTML and JavaScript.This step-by-step guide is ideal whether you’re a designer or visual artist with no programming experience, a reporter exploring the new frontier of data journalism, or anyone who wants to visualize and share data.Learn HTML, CSS, JavaScript, and SVG basicsDynamically generate web page elements from your data—and choose visual encoding rules to style themCreate bar charts, scatter plots, pie charts, stacked bar charts, and force-directed layoutsUse smooth, animated transitions to show changes in your dataIntroduce interactivity to help users explore data through different viewsCreate customized geographic maps with dataExplore hands-on with downloadable code and over 100 examples
Programming Pearls
Jon L. Bentley - 1986
Jon has done a wonderful job of updating the material. I am very impressed at how fresh the new examples seem." - Steve McConnell, author, Code CompleteWhen programmers list their favorite books, Jon Bentley's collection of programming pearls is commonly included among the classics. Just as natural pearls grow from grains of sand that irritate oysters, programming pearls have grown from real problems that have irritated real programmers. With origins beyond solid engineering, in the realm of insight and creativity, Bentley's pearls offer unique and clever solutions to those nagging problems. Illustrated by programs designed as much for fun as for instruction, the book is filled with lucid and witty descriptions of practical programming techniques and fundamental design principles. It is not at all surprising that
Programming Pearls
has been so highly valued by programmers at every level of experience. In this revision, the first in 14 years, Bentley has substantially updated his essays to reflect current programming methods and environments. In addition, there are three new essays on (1) testing, debugging, and timing; (2) set representations; and (3) string problems. All the original programs have been rewritten, and an equal amount of new code has been generated. Implementations of all the programs, in C or C++, are now available on the Web.What remains the same in this new edition is Bentley's focus on the hard core of programming problems and his delivery of workable solutions to those problems. Whether you are new to Bentley's classic or are revisiting his work for some fresh insight, this book is sure to make your own list of favorites.
MySQL Cookbook
Paul DuBois - 2002
Designed as a handy resource when you need quick solutions or techniques, the book offers dozens of short, focused pieces of code and hundreds of worked-out examples for programmers of all levels who don't have the time (or expertise) to solve MySQL problems from scratch.The new edition covers MySQL 5.0 and its powerful new features, as well as the older but still widespread MySQL 4.1. One major emphasis of this book is how to use SQL to formulate queries for particular kinds of questions, using the mysql client program included in MySQL distributions. The other major emphasis is how to write programs that interact with the MySQL server through an API. You'll find plenty of examples using several language APIs in multiple scenarios and situations, including the use of Ruby to retrieve and format data. There are also many new examples for using Perl, PHP, Python, and Java as well.Other recipes in the book teach you to:Access data from multiple tables at the same time Use SQL to select, sort, and summarize rows Find matches or mismatches between rows in two tables Determine intervals between dates or times, including age calculations Store images into MySQL and retrieve them for display in web pages Get LOAD DATA to read your data files properly or find which values in the file are invalid Use strict mode to prevent entry of bad data into your database Copy a table or a database to another server Generate sequence numbers to use as unique row identifiers Create database events that execute according to a schedule And a lot moreMySQL Cookbook doesn't attempt to develop full-fledged, complex applications. Instead, it's intended to assist you in developing applications yourself by helping you get past problems that have you stumped.
How Linux Works: What Every Superuser Should Know
Brian Ward - 2004
Some books try to give you copy-and-paste instructions for how to deal with every single system issue that may arise, but How Linux Works actually shows you how the Linux system functions so that you can come up with your own solutions. After a guided tour of filesystems, the boot sequence, system management basics, and networking, author Brian Ward delves into open-ended topics such as development tools, custom kernels, and buying hardware, all from an administrator's point of view. With a mixture of background theory and real-world examples, this book shows both "how" to administer Linux, and "why" each particular technique works, so that you will know how to make Linux work for you.
Site Reliability Engineering: How Google Runs Production Systems
Betsy Beyer - 2016
So, why does conventional wisdom insist that software engineers focus primarily on the design and development of large-scale computing systems?In this collection of essays and articles, key members of Google's Site Reliability Team explain how and why their commitment to the entire lifecycle has enabled the company to successfully build, deploy, monitor, and maintain some of the largest software systems in the world. You'll learn the principles and practices that enable Google engineers to make systems more scalable, reliable, and efficient--lessons directly applicable to your organization.This book is divided into four sections: Introduction--Learn what site reliability engineering is and why it differs from conventional IT industry practicesPrinciples--Examine the patterns, behaviors, and areas of concern that influence the work of a site reliability engineer (SRE)Practices--Understand the theory and practice of an SRE's day-to-day work: building and operating large distributed computing systemsManagement--Explore Google's best practices for training, communication, and meetings that your organization can use