Introduction to Quantum Mechanics with Applications to Chemistry


Linus Pauling - 1985
    Numerous tables and figures.

The Physical Principles of the Quantum Theory


Werner Heisenberg - 1930
    His matrix theory is one of the bases of modern quantum mechanics, while his "uncertainty principle" has altered our whole philosophy of science.In this classic, based on lectures delivered at the University of Chicago, Heisenberg presents a complete physical picture of quantum theory. He covers not only his own contributions, but also those of Bohr, Dirac, Bose, de Broglie, Fermi, Einstein, Pauli, Schrodinger, Somerfield, Rupp, ·Wilson, Germer, and others in a text written for the physical scientist who is not a specialist in quantum theory or in modern mathematics.Partial contents: introduction (theory and experiment, fundamental concepts); critique of physical concepts of the corpuscular theory (uncertainty relations and their illustration); critique of the physical concepts of the wave theory (uncertainty relations for waves, discussion of an actual measurement of the electromagnetic field); statistical interpretation of quantum theory (mathematical considerations, interference of probabilities, Bohr's complementarity); discussion of important experiments (C. T. R. Wilson, diffraction , Einstein-Rupp, emission, absorption and dispersion of radiation, interference and conservation laws, Compton effect, radiation fluctuation phenomena, relativistic formulation of the quantum theory).An 80-page appendix on the mathematical apparatus of the quantum theory is provided for the specialist.

Quantum Mechanics and Path Integrals


Richard P. Feynman - 1965
    Feynman starts with an intuitive view of fundamental quantum mechanics, gradually introducing path integrals. Later chapters explore more advanced topics, including the perturbation method, quantum electrodynamics, and statistical mechanics. 1965 edition, emended in 2005.

Understanding Thermodynamics


Hendrick C. Van Ness - 1983
    Language is informal, examples are vivid and lively, and the perspectivie is fresh. Based on lectures delivered to engineering students, this work will also be valued by scientists, engineers, technicians, businessmen, anyone facing energy challenges of the future.

Mathematics of Classical and Quantum Physics


Frederick W. Byron Jr. - 1969
    Organized around the central concept of a vector space, the book includes numerous physical applications in the body of the text as well as many problems of a physical nature. It is also one of the purposes of this book to introduce the physicist to the language and style of mathematics as well as the content of those particular subjects with contemporary relevance in physics.Chapters 1 and 2 are devoted to the mathematics of classical physics. Chapters 3, 4 and 5 — the backbone of the book — cover the theory of vector spaces. Chapter 6 covers analytic function theory. In chapters 7, 8, and 9 the authors take up several important techniques of theoretical physics — the Green's function method of solving differential and partial differential equations, and the theory of integral equations. Chapter 10 introduces the theory of groups. The authors have included a large selection of problems at the end of each chapter, some illustrating or extending mathematical points, others stressing physical application of techniques developed in the text.Essentially self-contained, the book assumes only the standard undergraduate preparation in physics and mathematics, i.e. intermediate mechanics, electricity and magnetism, introductory quantum mechanics, advanced calculus and differential equations. The text may be easily adapted for a one-semester course at the graduate or advanced undergraduate level.

The Road to Reality: A Complete Guide to the Laws of the Universe


Roger Penrose - 2004
    From the very first attempts by the Greeks to grapple with the complexities of our known world to the latest application of infinity in physics, The Road to Reality carefully explores the movement of the smallest atomic particles and reaches into the vastness of intergalactic space. Here, Penrose examines the mathematical foundations of the physical universe, exposing the underlying beauty of physics and giving us one the most important works in modern science writing.

Quantum Mechanics: The Theoretical Minimum


Leonard Susskind - 2014
    Now, physicist Leonard Susskind has teamed up with data engineer Art Friedman to present the theory and associated mathematics of the strange world of quantum mechanics.In this follow-up to The Theoretical Minimum, Susskind and Friedman provide a lively introduction to this famously difficult field, which attempts to understand the behavior of sub-atomic objects through mathematical abstractions. Unlike other popularizations that shy away from quantum mechanics’ weirdness, Quantum Mechanics embraces the utter strangeness of quantum logic. The authors offer crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics, and each chapter includes exercises to ensure mastery of each area. Like The Theoretical Minimum, this volume runs parallel to Susskind’s eponymous Stanford University-hosted continuing education course.An approachable yet rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.

Theoretical Physics


Georg Joos - 1987
    Indispensable reference for graduates and undergraduates.

Where Does The Weirdness Go?: Why Quantum Mechanics Is Strange, But Not As Strange As You Think


David Lindley - 1996
    Everyday experience cannot prepare us for the sub-atomic world, where quantum effects become all-important. Here, particles can look like waves, and vice versa; electrons seem to lose their identity and instead take on a shifting, unpredictable appearance that depends on how they are being observed; and a single photon may sometimes behave as if it could be in two places at once. In the world of quantum mechanics, uncertainty and ambiguity become not just unavoidable, but essential ingredients of science -- a development so disturbing that to Einstein "it was as if God were playing dice with the universe." And there is no one better able to explain the quantum revolution as it approaches the century mark than David Lindley. He brings the quantum revolution full circle, showing how the familiar and trustworthy reality of the world around us is actually a consequence of the ineffable uncertainty of the subatomic quantum world -- the world we can't see.

The Quantum Theory of Fields: Volume I, Foundations


Steven Weinberg - 1995
    This is a two-volume work. Volume I introduces the foundations of quantum field theory. The development is fresh and logical throughout, with each step carefully motivated by what has gone before, and emphasizing the reasons why such a theory should describe nature. After a brief historical outline, the book begins anew with the principles about which we are most certain, relativity and quantum mechanics, and the properties of particles that follow from these principles. Quantum field theory emerges from this as a natural consequence. The author presents the classic calculations of quantum electrodynamics in a thoroughly modern way, showing the use of path integrals and dimensional regularization. His account of renormalization theory reflects the changes in our view of quantum field theory since the advent of effective field theories. The book's scope extends beyond quantum electrodynamics to elementary particle physics, and nuclear physics. It contains much original material, and is peppered with examples and insights drawn from the author's experience as a leader of elementary particle research. Problems are included at the end of each chapter. This work will be an invaluable reference for all physicists and mathematicians who use quantum field theory, and it is also appropriate as a textbook for graduate students in this area.

The God Effect: Quantum Entanglement, Science's Strangest Phenomenon


Brian Clegg - 2006
    Once two particles are entangled, a change to one of them is reflected---instantly---in the other, be they in the same lab or light-years apart. So counterintuitive is this phenomenon and its implications that Einstein himself called it "spooky" and thought that it would lead to the downfall of quantum theory. Yet scientists have since discovered that quantum entanglement, the "God Effect," was one of Einstein's few---and perhaps one of his greatest---mistakes. What does it mean? The possibilities offered by a fuller understanding of the nature of entanglement read like something out of science fiction: communications devices that could span the stars, codes that cannot be broken, computers that dwarf today's machines in speed and power, teleportation, and more. In The God Effect, veteran science writer Brian Clegg has written an exceptionally readable and fascinating (and equation-free) account of entanglement, its history, and its application. Fans of Brian Greene and Amir Aczel and those interested in the marvelous possibilities coming down the quantum road will find much to marvel, illuminate, and delight.

An Introduction To Quantum Field Theory


Michael E. Peskin - 1994
    The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.

Course of Theoretical Physics: Vol. 1, Mechanics


L.D. Landau - 1969
    The exposition is simple and leads to the most complete direct means of solving problems in mechanics. The final sections on adiabatic invariants have been revised and augmented. In addition a short biography of L D Landau has been inserted.

Introduction to Quantum Mechanics


David J. Griffiths - 1994
    The book s two-part coverage organizes topics under basic theory, and assembles an arsenal of approximation schemes with illustrative applications. For physicists and engineers. "

Thermodynamics


Enrico Fermi - 1956
    Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entropy (properties of cycles, entropy of a system whose states can be represented on a (V, p) diagram, Clapeyron and Van der Waals equations), thermodynamic potentials (free energy, thermodynamic potential at constant pressure, the phase rule, thermodynamics of the reversible electric cell), gaseous reactions (chemical equilibria in gases, Van't Hoff reaction box, another proof of the equation of gaseous equilibria, principle of Le Chatelier), the thermodynamics of dilute solutions (osmotic pressure, chemical equilibria in solutions, the distribution of a solute between 2 phases vapor pressure, boiling and freezing points), the entropy constant (Nernst's theorem, thermal ionization of a gas, thermionic effect, etc.).