Mathematical Thought from Ancient to Modern Times, Volume 1


Morris Kline - 1972
    Volume 1 looks at the discipline's origins in Babylon and Egypt, the creation of geometry and trigonometry by the Greeks, and the role of mathematics in the medieval and early modern periods. Volume 2 focuses on calculus, the rise of analysis in the 19th century, and the number theories of Dedekind and Dirichlet. The concluding volume covers the revival of projective geometry, the emergence of abstract algebra, the beginnings of topology, and the influence of Godel on recent mathematical study.

How Not to Be Wrong: The Power of Mathematical Thinking


Jordan Ellenberg - 2014
    In How Not to Be Wrong, Jordan Ellenberg shows us how terribly limiting this view is: Math isn’t confined to abstract incidents that never occur in real life, but rather touches everything we do—the whole world is shot through with it.Math allows us to see the hidden structures underneath the messy and chaotic surface of our world. It’s a science of not being wrong, hammered out by centuries of hard work and argument. Armed with the tools of mathematics, we can see through to the true meaning of information we take for granted: How early should you get to the airport? What does “public opinion” really represent? Why do tall parents have shorter children? Who really won Florida in 2000? And how likely are you, really, to develop cancer?How Not to Be Wrong presents the surprising revelations behind all of these questions and many more, using the mathematician’s method of analyzing life and exposing the hard-won insights of the academic community to the layman—minus the jargon. Ellenberg chases mathematical threads through a vast range of time and space, from the everyday to the cosmic, encountering, among other things, baseball, Reaganomics, daring lottery schemes, Voltaire, the replicability crisis in psychology, Italian Renaissance painting, artificial languages, the development of non-Euclidean geometry, the coming obesity apocalypse, Antonin Scalia’s views on crime and punishment, the psychology of slime molds, what Facebook can and can’t figure out about you, and the existence of God.Ellenberg pulls from history as well as from the latest theoretical developments to provide those not trained in math with the knowledge they need. Math, as Ellenberg says, is “an atomic-powered prosthesis that you attach to your common sense, vastly multiplying its reach and strength.” With the tools of mathematics in hand, you can understand the world in a deeper, more meaningful way. How Not to Be Wrong will show you how.

Statistics in Plain English


Timothy C. Urdan - 2001
    Each self-contained chapter consists of three sections. The first describes the statistic, including how it is used and what information it provides. The second section reviews how it works, how to calculate the formula, the strengths and weaknesses of the technique, and the conditions needed for its use. The final section provides examples that use and interpret the statistic. A glossary of terms and symbols is also included.New features in the second edition include:an interactive CD with PowerPoint presentations and problems for each chapter including an overview of the problem's solution; new chapters on basic research concepts including sampling, definitions of different types of variables, and basic research designs and one on nonparametric statistics; more graphs and more precise descriptions of each statistic; and a discussion of confidence intervals.This brief paperback is an ideal supplement for statistics, research methods, courses that use statistics, or as a reference tool to refresh one's memory about key concepts. The actual research examples are from psychology, education, and other social and behavioral sciences.Materials formerly available with this book on CD-ROM are now available for download from our website www.psypress.com. Go to the book's page and look for the 'Download' link in the right-hand column.

How Math Explains the World: A Guide to the Power of Numbers, from Car Repair to Modern Physics


James D. Stein - 2008
    In the four main sections of the book, Stein tells the stories of the mathematical thinkers who discerned some of the most fundamental aspects of our universe. From their successes and failures, delusions, and even duels, the trajectories of their innovations—and their impact on society—are traced in this fascinating narrative. Quantum mechanics, space-time, chaos theory and the workings of complex systems, and the impossibility of a "perfect" democracy are all here. Stein's book is both mind-bending and practical, as he explains the best way for a salesman to plan a trip, examines why any thought you could have is imbedded in the number π , and—perhaps most importantly—answers one of the modern world's toughest questions: why the garage can never get your car repaired on time.Friendly, entertaining, and fun, How Math Explains the World is the first book by one of California's most popular math teachers, a veteran of both "math for poets" and Princeton's Institute for Advanced Studies. And it's perfect for any reader wanting to know how math makes both science and the world tick.

Euclid in the Rainforest: Discovering Universal Truth in Logic and Math


Joseph Mazur - 2004
    Underpinning both math and science, it is the foundation of every major advancement in knowledge since the time of the ancient Greeks. Through adventure stories and historical narratives populated with a rich and quirky cast of characters, Mazur artfully reveals the less-than-airtight nature of logic and the muddled relationship between math and the real world. Ultimately, Mazur argues, logical reasoning is not purely robotic. At its most basic level, it is a creative process guided by our intuitions and beliefs about the world.

Beyond Infinity: An Expedition to the Outer Limits of Mathematics


Eugenia Cheng - 2017
    Along the way she considers how to use a chessboard to plan a worldwide dinner party, how to make a chicken-sandwich sandwich, and how to create infinite cookies from a finite ball of dough. Beyond Infinity shows how this little symbol holds the biggest idea of all. "Beyond Infinity is a spirited and friendly guide--appealingly down to earth about math that's extremely far out." --Jordan Ellenberg, author of How Not to Be Wrong "Dr. Cheng . . . has a knack for brushing aside conventions and edicts, like so many pie crumbs from a cutting board." --Natalie Angier, New York Times

Unknown Quantity: A Real and Imaginary History of Algebra


John Derbyshire - 2006
    As he did so masterfully in Prime Obsession, Derbyshire brings the evolution of mathematical thinking to dramatic life by focusing on the key historical players. Unknown Quantity begins in the time of Abraham and Isaac and moves from Abel's proof to the higher levels of abstraction developed by Galois through modern-day advances. Derbyshire explains how a simple turn of thought from this plus this equals this to this plus what equals this? gave birth to a whole new way of perceiving the world. With a historian's narrative authority and a beloved teacher's clarity and passion, Derbyshire leads readers on an intellectually satisfying and pleasantly challenging historical and mathematical journey.

Coincidences, Chaos, and All That Math Jazz: Making Light of Weighty Ideas


Edward B. Burger - 2005
    Each chapter opens with a surprising insight—not a mathematic formula, but a common observation. From there, the authors leapfrog over math and anecdote toward profound ideas about nature, art, and music. Coincidences is a book for lovers of puzzles and posers of outlandish questions, lapsed math aficionados and the formula-phobic alike.

Surreal Numbers


Donald Ervin Knuth - 1974
    This title is intended for those who might enjoy an engaging dialogue on abstract mathematical ideas, and those who might wish to experience how new mathematics is created.

Maths in Minutes: 200 Key Concepts Explained in an Instant


Paul Glendinning - 2012
    Each concept is quick and easy to remember, described by means of an easy-to-understand picture and a maximum 200-word explanation. Concepts span all of the key areas of mathematics, including Fundamentals of Mathematics, Sets and Numbers, Geometry, Equations, Limits, Functions and Calculus, Vectors and Algebra, Complex Numbers, Combinatorics, Number Theory, Metrics and Measures and Topology. Incredibly quick - clear artworks and simple explanations that can be easily remembered. Based on scientific research that the brain best absorbs information visually. Compact and portable format - the ideal, handy reference.

Abstract Algebra


I.N. Herstein - 1986
    Providing a concise introduction to abstract algebra, this work unfolds some of the fundamental systems with the aim of reaching applicable, significant results.

The Science of Fear: Why We Fear the Things We Shouldn't--and Put Ourselves in Greater Danger


Daniel Gardner - 2008
    And yet, we are the safest and healthiest humans in history. Irrational fear seems to be taking over, often with tragic results. For example, in the months after 9/11, when people decided to drive instead of fly—believing they were avoiding risk—road deaths rose by more than 1,500. In this fascinating, lucid, and thoroughly entertaining examination of how humans process risk, journalist Dan Gardner had the exclusive cooperation of Paul Slovic, the world renowned risk-science pioneer, as he reveals how our hunter gatherer brains struggle to make sense of a world utterly unlike the one that made them. Filled with illuminating real world examples, interviews with experts, and fast-paced, lean storytelling, The Science of Fear shows why it is truer than ever that the worst thing we have to fear is fear itself.

Grammatical Man: Information, Entropy, Language and Life


Jeremy Campbell - 1973
    It describes how the laws and discoveries of information theory now support controversial revisions to Darwinian evolution, begin to unravel the mysteries of language, memory and dreams, and stimulate provocative ideas in psychology, philosophy, art, music, computers and even the structure of society. Perhaps its most fascinating and unexpected surprise is the suggestion the order and complexity may be as natural as disorder and disorganization. Contrary to the entropy principle, which implies that order is the exception and confusion the rule, information theory asserts that order and sense can indeed prevail against disorder and nonsense. From the simplest forms of organic life to the words used to express our most complex ideas, from our genes to our dreams, from microcomputers to telecommunications, virtually everything around us follows simple rules of information. Life and the material world, like language, remain "grammatical." Grammatical man inhabits a grammatical universe.

Introduction to Mathematical Philosophy


Bertrand Russell - 1918
    In it, Russell offers a nontechnical, undogmatic account of his philosophical criticism as it relates to arithmetic and logic. Rather than an exhaustive treatment, however, the influential philosopher and mathematician focuses on certain issues of mathematical logic that, to his mind, invalidated much traditional and contemporary philosophy.In dealing with such topics as number, order, relations, limits and continuity, propositional functions, descriptions, and classes, Russell writes in a clear, accessible manner, requiring neither a knowledge of mathematics nor an aptitude for mathematical symbolism. The result is a thought-provoking excursion into the fascinating realm where mathematics and philosophy meet — a philosophical classic that will be welcomed by any thinking person interested in this crucial area of modern thought.

Poetry of the Universe


Robert Osserman - 1995
    40 illustrations throughout.