Book picks similar to
Platonic and Archimedean Solids by Daud Sutton
math
mathematics
art
science
Q.E.D.: Beauty in Mathematical Proof
Burkard Polster - 2004
presents some of the most famous mathematical proofs in a charming book that will appeal to nonmathematicians and math experts alike. Grasp in an instant why Pythagoras's theorem must be correct. Follow the ancient Chinese proof of the volume formula for the frustrating frustum, and Archimedes' method for finding the volume of a sphere. Discover the secrets of pi and why, contrary to popular belief, squaring the circle really is possible. Study the subtle art of mathematical domino tumbling, and find out how slicing cones helped save a city and put a man on the moon.
Ruler and Compass: Practical Geometric Constructions
Andrew Sutton - 2009
Originally marked out by eye and later by use of a stretched cord, in time these forms came to be made with the simple tools of ruler and compass.This small book introduces the origins and basic principles of geometric constructions using these ancient tools, before going on to cover dozens of geometric forms, from practical fundamentals to more challenging constructions.
Sacred Number: The Secret Quality of Quantities
Miranda Lundy - 2005
Beautifully illustrated with old engravings as well as contemporary imagery, Sacred Number introduces basic counting systems; significant numbers from major religious texts; the importance of astronomy, geometry, and music to number quality; how numbers affect architecture. Lundy explains why the ideas of Pythagoras still resonate, and she profiles each number from one to ten to show its distinct qualities: why, for example, the golden section is associated with five, and seven with the Virgin Mary.
Sun, Moon and Earth
Robin Heath - 1999
We all dance to these primary rhythms. This book reveals the poetic cosmology that lies within the cycles of the Sun and Moon as seen from the Earth.
The Golden Section: Nature’s Greatest Secret
Scott Olsen - 2006
The Golden Section—otherwise known as phi, the golden mean, or the golden ratio—is one of the most elegant and beautiful rations in the universe.Defined as a line segment divided into two unequal parts, such that the ratio of the shorter portion to the longer portion is the same as the ratio of the longer portion to the whole, it pops up throughout nature—in water, DNA, the proportions of fish and butterflies, and the number of teeth we possess—as well as in art and architecture, music, philosophy, science, and mathematics.Beautifully illustrated, The Golden Section tells the story of this remarkable construct and its wide-ranging impact on civilization and the natural world.
The Elements of Music: Melody, Rhythm, and Harmony
Jason Martineau - 2008
These in turn are corresponded to language as musical metaphor. This, in combination with novel graphics and symbols, carries the reader to a basic understanding of melodic, harmonic, and rhythmic principles, as well as Western musical notation. A great primer on music theory for the novice or professional, as well as an invaluable resource for composers and students, it includes the following:- A rich unfolding of metaphors and illustrations to elucidate a notoriously impenetrable and abstract subject.- The properties of the overtone series and how it influences harmonic and melodic thought.- A discussion of epigrams and dialectics exploring how meaning is carried through time.- Rhythm and meter as the marking of time and the organization of it into self-similar structures.- From the circle of fifths to intervals, triads, and later seventh chords and extensions.- How major/minor key tonality and modulation occur, and how they differ from music based upon drones or other types of scales.- How form and structure reflect the relationship of humans to time and emotional states.- A wealth of scales, rhythmic patterns, and notation references in the appendices.
A Little Book of Coincidence in the Solar System
John Martineau - 2000
From the observations of Ptolemy and Kepler to the Harmony of the Spheres and the hidden structure of the solar system, John Martineau reveals the exquisite orbital patterns of the planets and the mathematical relationships that govern them. A table shows the relative measurements of each planet in eighteen categories, and three pages show the beautiful dance patterns of thirty six pairs of planets and moons.
Harmonograph: A Visual Guide to the Mathematics of Music
Anthony Ashton - 1999
Harmonograph is an introduction to the evolution of simple harmonic theory, from the discoveries of Pythagoras to diatonic tuning and equal temperament. Beautiful drawings show the octave as triangle, the fifth as pentagram; diagrams show the principles of harmonics, overtones, and the monochord. Anthony Ashton examines the phenomenon of resonance in Chladni patterns, describes how to build a harmonograph of your own, and provides tables of world tuning systems. This inspiring book will appeal to musicians, mathematicians, designers, and artists alike.
A Little History of Dragons
Joyce Hargreaves - 2006
Why are dragons recognised in almost all cultures on Earth? What is the mysterious geomantic gold they secretly guard? The author tells the story of these extraordinary animals through examples drawn from all over the world.
The Miracle of Trees
Olavi Huikari - 2012
What is a tree? Why are they so important to life on Earth? How do they eat, breathe, grow, communicate, and regenerate themselves? How many different kinds of trees are there, and where do they live? In this beautiful little book, illustrated with rare old engravings and specially commissioned drawings, internationally renowned Finnish tree expert Professor Olavi Huikari takes us on an unforgettable journey deep into the secrets of these most majestic of Earth's life forms.
A Beginner's Guide to Constructing the Universe: The Mathematical Archetypes of Nature, Art, and Science
Michael S. Schneider - 1994
This is a new view of mathematics, not the one we learned at school but a comprehensive guide to the patterns that recur through the universe and underlie human affairs. A Beginner's Guide to Constructing, the Universe shows you: Why cans, pizza, and manhole covers are round.Why one and two weren't considered numbers by the ancient Greeks.Why squares show up so often in goddess art and board games.What property makes the spiral the most widespread shape in nature, from embryos and hair curls to hurricanes and galaxies. How the human body shares the design of a bean plant and the solar system. How a snowflake is like Stonehenge, and a beehive like a calendar. How our ten fingers hold the secrets of both a lobster a cathedral, and much more.
A Brief History of Mathematics
Marcus du Sautoy - 2011
Professor Marcus du Sautoy shows how these masters of abstraction find a role in the real world and proves that mathematics is the driving force behind modern science. He explores the relationship between Newton and Leibniz, the men behind the calculus; looks at how the mathematics that Euler invented 200 years ago paved the way for the internet and discovers how Fourier transformed our understanding of heat, light and sound. In addition, he finds out how Galois’ mathematics describes the particles that make up our universe, how Gaussian distribution underpins modern medicine, and how Riemann’s maths helped Einstein with his theory of relativity. Finally, he introduces Cantor, who discovered infinite numbers; Poincaré, whose work gave rise to chaos theory; G.H. Hardy, whose work inspired the millions of codes that help to keep the internet safe, and Nicolas Bourbaki, the mathematician who never was. The BBC Radio 4 series looking at the people who shaped modern mathematics, written and presented by Marcus du Sautoy. 1 CDs, 150 minutes
A Beautiful Question: Finding Nature's Deep Design
Frank Wilczek - 2015
Wilczek’s groundbreaking work in quantum physics was inspired by his intuition to look for a deeper order of beauty in nature. In fact, every major advance in his career came from this intuition: to assume that the universe embodies beautiful forms, forms whose hallmarks are symmetry—harmony, balance, proportion—and economy. There are other meanings of “beauty,” but this is the deep logic of the universe—and it is no accident that it is also at the heart of what we find aesthetically pleasing and inspiring.Wilczek is hardly alone among great scientists in charting his course using beauty as his compass. As he reveals in A Beautiful Question, this has been the heart of scientific pursuit from Pythagoras, the ancient Greek who was the first to argue that “all things are number,” to Galileo, Newton, Maxwell, Einstein, and into the deep waters of twentiethcentury physics. Though the ancients weren’t right about everything, their ardent belief in the music of the spheres has proved true down to the quantum level. Indeed, Wilczek explores just how intertwined our ideas about beauty and art are with our scientific understanding of the cosmos.Wilczek brings us right to the edge of knowledge today, where the core insights of even the craziest quantum ideas apply principles we all understand. The equations for atoms and light are almost literally the same equations that govern musical instruments and sound; the subatomic particles that are responsible for most of our mass are determined by simple geometric symmetries. The universe itself, suggests Wilczek, seems to want to embody beautiful and elegant forms. Perhaps this force is the pure elegance of numbers, perhaps the work of a higher being, or somewhere between. Either way, we don’t depart from the infinite and infinitesimal after all; we’re profoundly connected to them, and we connect them. When we find that our sense of beauty is realized in the physical world, we are discovering something about the world, but also something about ourselves.Gorgeously illustrated, A Beautiful Question is a mind-shifting book that braids the age-old quest for beauty and the age-old quest for truth into a thrilling synthesis. It is a dazzling and important work from one of our best thinkers, whose humor and infectious sense of wonder animate every page. Yes: The world is a work of art, and its deepest truths are ones we already feel, as if they were somehow written in our souls.
On Growth and Form
D'Arcy Wentworth Thompson - 1917
Why do living things and physical phenomena take the forms they do? Analyzing the mathematical and physical aspects of biological processes, this historic work, first published in 1917, has become renowned as well for the poetry of is descriptions.