Book picks similar to
Data Structures in C by Noel Kalicharan
ds
career-refreshers-new-skills
career
data
Data Structure Through C
Yashavant P. Kanetkar - 2003
It adopts a novel approach, by using the programming language c to teach data structures. The book discusses concepts like arrays, algorithm analysis, strings, queues, trees and graphs. Well-designed animations related to these concepts are provided in the cd-rom which accompanies the book. This enables the reader to get a better understanding of the complex procedures described in the book through a visual demonstration of the same. Data structure through c is a comprehensive book which can be used as a reference book by students as well as computer professionals. It is written in a clear, easy-to-understood manner and it includes several programs and examples to explain clearly the complicated concepts related to data structures. The book was published by bpb publications in 2003 and is available in paperback. Key features: the book contains example programs that elucidate the concepts. It comes with a cd that visually demonstrates the theory presented in the book.
Schaum's Outline of Theory and Problems of Data Structures
Seymour Lipschutz - 1986
This guide, which can be used with any text or can stand alone, contains at the beginning of each chapter a list of key definitions, a summary of major concepts, step by step solutions to dozens of problems, and additional practice problems.
Data Structures and Algorithm Analysis in C
Mark Allen Weiss - 1992
The book's conceptual presentation focuses on ADTs and the analysis of algorithms for efficiency, with a particular concentration on performance and running time. The second edition contains a new chapter that examines advanced data structures such as red black trees, top down splay trees, treaps, k-d trees, and pairing heaps among others. All code examples now conform to ANSI C and coverage of the formal proofs underpinning several key data structures has been strengthened.
OS X 10.10 Yosemite: The Ars Technica Review
John Siracusa - 2014
Siracusa's overview, wrap-up, and critique of everything new in OS X 10.10 Yosemite.
Data Structures: A Pseudocode Approach with C
Richard F. Gilberg - 1998
A new four-part organizational structure increases the flexibility of the text, and all material is presented in a straightforward manner accompanied by an array of examples and visual diagrams.
Data Structures Using C and C++
Yedidyah Langsam - 1995
Covers the C++ language, featuring a wealth of tested and debugged working programs in C and C++. Explains and analyzes algorithms -- showing step- by-step solutions to real problems. Presents algorithms as intermediaries between English language descriptions and C programs. Covers classes in C++, including function members, inheritance and object orientation, an example of implementing abstract data types in C++, as well as polymorphism.
C for Dummies
Dan Gookin - 1997
Actually, it's computer sense--C programming. After digesting C For Dummies, 2nd Edition, you'll understand it. C programs are fast, concise and versatile. They let you boss your computer around for a change. So turn on your computer, get a free compiler and editor (the book tells you where), pull up a chair, and get going. You won't have to go far (page 13) to find your first program example. You'll do short, totally manageable, hands-on exercises to help you make sense of:All 32 keywords in the C language (that's right--just 32 words) The functions--several dozen of them Terms like printf(), scanf(), gets (), and puts () String variables, numeric variables, and constants Looping and implementation Floating-point values In case those terms are almost as intimidating as the idea of programming, be reassured that C For Dummies was written by Dan Gookin, bestselling author of DOS For Dummies, the book that started the whole library. So instead of using expletives and getting headaches, you'll be using newly acquired skills and getting occasional chuckles as you discover how to:Design and develop programs Add comments (like post-it-notes to yourself) as you go Link code to create executable programs Debug and deploy your programs Use lint, a common tool to examine and optimize your code A helpful, tear-out cheat sheet is a quick reference for comparison symbols, conversion characters, mathematical doodads, C numeric data types, and more. C For Dummies takes the mystery out of programming and gets you into it quickly and painlessly.
Grokking Algorithms An Illustrated Guide For Programmers and Other Curious People
Aditya Y. Bhargava - 2015
The algorithms you'll use most often as a programmer have already been discovered, tested, and proven. If you want to take a hard pass on Knuth's brilliant but impenetrable theories and the dense multi-page proofs you'll find in most textbooks, this is the book for you. This fully-illustrated and engaging guide makes it easy for you to learn how to use algorithms effectively in your own programs.Grokking Algorithms is a disarming take on a core computer science topic. In it, you'll learn how to apply common algorithms to the practical problems you face in day-to-day life as a programmer. You'll start with problems like sorting and searching. As you build up your skills in thinking algorithmically, you'll tackle more complex concerns such as data compression or artificial intelligence. Whether you're writing business software, video games, mobile apps, or system utilities, you'll learn algorithmic techniques for solving problems that you thought were out of your grasp. For example, you'll be able to:Write a spell checker using graph algorithmsUnderstand how data compression works using Huffman codingIdentify problems that take too long to solve with naive algorithms, and attack them with algorithms that give you an approximate answer insteadEach carefully-presented example includes helpful diagrams and fully-annotated code samples in Python. By the end of this book, you will know some of the most widely applicable algorithms as well as how and when to use them.
Think Like a Programmer: An Introduction to Creative Problem Solving
V. Anton Spraul - 2012
In this one-of-a-kind text, author V. Anton Spraul breaks down the ways that programmers solve problems and teaches you what other introductory books often ignore: how to Think Like a Programmer. Each chapter tackles a single programming concept, like classes, pointers, and recursion, and open-ended exercises throughout challenge you to apply your knowledge. You'll also learn how to:Split problems into discrete components to make them easier to solve Make the most of code reuse with functions, classes, and libraries Pick the perfect data structure for a particular job Master more advanced programming tools like recursion and dynamic memory Organize your thoughts and develop strategies to tackle particular types of problems Although the book's examples are written in C++, the creative problem-solving concepts they illustrate go beyond any particular language; in fact, they often reach outside the realm of computer science. As the most skillful programmers know, writing great code is a creative art—and the first step in creating your masterpiece is learning to Think Like a Programmer.
Thinking in CSS
Aravind Shenoy - 2014
Instead of wandering through loads of theory, we will understand CSS more practically so that we can design a webpage using CSS. We have used Notepad for the examples in this book. Alternatively, you can also use Notepad++ or any advanced editor. All that you need to do is copy the code and paste it into Notepad. Upon execution, you will get the output as depicted in the screenshots. Screenshots are provided for each sample code. Coding gets better with practice. The examples in this book are compatible with almost every browser. Instead of using the verbatim code, you can modify the code and see the change in the output, thereby understanding the subtle nuances of CSS. By the end of the book, with practice, you can achieve better things and get more acquainted with CSS.
Deep Learning
Ian Goodfellow - 2016
Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Doing Data Science
Cathy O'Neil - 2013
But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know.In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science.Topics include:Statistical inference, exploratory data analysis, and the data science processAlgorithmsSpam filters, Naive Bayes, and data wranglingLogistic regressionFinancial modelingRecommendation engines and causalityData visualizationSocial networks and data journalismData engineering, MapReduce, Pregel, and HadoopDoing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.
Computer Science: A Structured Approach Using C++
Behrouz A. Forouzan - 1999
Every complete program uses a consistent style, and as programs are analyzed, styles and standards are further explained. Whenever possible, the authors develop the principle of a subject before they introduce the language implementation so the student understands the concept before dealing with the nuances of C++. In addition, a vast array of figures and tables visually reinforce key concepts. By integrating software engineering principles and encouraging the student to resist the temptation to immediately code, the text builds a solid foundation in problem solving.