A Question of Time: The Ultimate Paradox


Scientific American - 2012
    

Einstein's Theory of Relativity


Max Born - 1962
    This is such a book. Max Born is a Nobel Laureate (1955) and one of the world's great physicists: in this book he analyzes and interprets the theory of Einsteinian relativity. The result is undoubtedly the most lucid and insightful of all the books that have been written to explain the revolutionary theory that marked the end of the classical and the beginning of the modern era of physics.The author follows a quasi-historical method of presentation. The book begins with a review of the classical physics, covering such topics as origins of space and time measurements, geometric axioms, Ptolemaic and Copernican astronomy, concepts of equilibrium and force, laws of motion, inertia, mass, momentum and energy, Newtonian world system (absolute space and absolute time, gravitation, celestial mechanics, centrifugal forces, and absolute space), laws of optics (the corpuscular and undulatory theories, speed of light, wave theory, Doppler effect, convection of light by matter), electrodynamics (including magnetic induction, electromagnetic theory of light, electromagnetic ether, electromagnetic laws of moving bodies, electromagnetic mass, and the contraction hypothesis). Born then takes up his exposition of Einstein's special and general theories of relativity, discussing the concept of simultaneity, kinematics, Einstein's mechanics and dynamics, relativity of arbitrary motions, the principle of equivalence, the geometry of curved surfaces, and the space-time continuum, among other topics. Born then points out some predictions of the theory of relativity and its implications for cosmology, and indicates what is being sought in the unified field theory.This account steers a middle course between vague popularizations and complex scientific presentations. This is a careful discussion of principles stated in thoroughly acceptable scientific form, yet in a manner that makes it possible for the reader who has no scientific training to understand it. Only high school algebra has been used in explaining the nature of classical physics and relativity, and simple experiments and diagrams are used to illustrate each step. The layman and the beginning student in physics will find this an immensely valuable and usable introduction to relativity. This Dover 1962 edition was greatly revised and enlarged by Dr. Born.

The Philosophy of Space and Time


Hans Reichenbach - 1957
    A brilliantly clear and penetrating exposition of developments in physical science and mathematics brought about by the advent of non-Euclidean geometries, including in-depth coverage of the foundations of geometry, the theory of time, Einstein's theory of relativity and its consequences, other key topics.

Quantum Physics and the Art of Departure


Craig Lancaster - 2011
    A traveling salesman consigned to a late-night bus ride. A prison inmate stripped of everything but his pride. A teenage runaway. Mismatched lovers. In his debut collection of short fiction, award-winning novelist Craig Lancaster returns to the terrain of his Montana home and takes on the notion of separation in its many forms - from comfort zones, from ideas, from people, from security, from fears. These ten stories delve into small towns and big cities, into love and despair, into what drives us and what scares us, peeling back the layers of our humanity with every pag

Essentials of Econometrics


Damodar N. Gujarati - 1998
    This text provides a simple and straightforward introduction to econometrics for the beginner. The book is designed to help students understand econometric techniques through extensive examples, careful explanations, and a wide variety of problem material. In each of the editions, I have tried to incorporate major developments in the field in an intuitive and informative way without resort to matrix algebra, calculus, or statistics beyond the introductory level. The fourth edition continues that tradition.

Mathematics


Keith Devlin - 1988
    A modern classic by an accomplished mathematician and best-selling author has been updated to encompass and explain the recent headline-making advances in the field in non-technical terms.

Lectures on Quantum Mechanics


Paul A.M. Dirac - 1964
    The remaining lectures build on that idea, examining the possibility of building a relativistic quantum theory on curved surfaces or flat surfaces.

Elliptic Tales: Curves, Counting, and Number Theory


Avner Ash - 2012
    The Clay Mathematics Institute is offering a prize of $1 million to anyone who can discover a general solution to the problem. In this book, Avner Ash and Robert Gross guide readers through the mathematics they need to understand this captivating problem.The key to the conjecture lies in elliptic curves, which are cubic equations in two variables. These equations may appear simple, yet they arise from some very deep--and often very mystifying--mathematical ideas. Using only basic algebra and calculus while presenting numerous eye-opening examples, Ash and Gross make these ideas accessible to general readers, and in the process venture to the very frontiers of modern mathematics. Along the way, they give an informative and entertaining introduction to some of the most profound discoveries of the last three centuries in algebraic geometry, abstract algebra, and number theory. They demonstrate how mathematics grows more abstract to tackle ever more challenging problems, and how each new generation of mathematicians builds on the accomplishments of those who preceded them. Ash and Gross fully explain how the Birch and Swinnerton-Dyer Conjecture sheds light on the number theory of elliptic curves, and how it provides a beautiful and startling connection between two very different objects arising from an elliptic curve, one based on calculus, the other on algebra.

Principles of Physics


David Halliday - 2010
    A number of the key figures in the new edition are revised to provide a more inviting and informative treatment. The figures are broken into component parts with supporting commentary so that they can more readily see the key ideas. Material from The Flying Circus is incorporated into the chapter opener puzzlers, sample problems, examples and end-of-chapter problems to make the subject more engaging. Checkpoints enable them to check their understanding of a question with some reasoning based on the narrative or sample problem they just read. Sample Problems also demonstrate how engineers can solve problems with reasoned solutions.

Fundamentals of Physics: Mechanics, Relativity, and Thermodynamics


Ramamurti Shankar - 2014
    Shankar, a well-known physicist and contagiously enthusiastic educator, was among the first to offer a course through the innovative Open Yale Course program. His popular online video lectures on introductory physics have been viewed over a million times. In this concise and self-contained book based on his online Yale course, Shankar explains the fundamental concepts of physics from Galileo’s and Newton’s discoveries to the twentieth-century’s revolutionary ideas on relativity and quantum mechanics.   The book begins at the simplest level, develops the basics, and reinforces fundamentals, ensuring a solid foundation in the principles and methods of physics. It provides an ideal introduction for college-level students of physics, chemistry, and engineering, for motivated AP Physics students, and for general readers interested in advances in the sciences. Instructor resources--including problem sets and sample examinations--and more information about Professor Shankar's course are available at http://oyc.yale.edu/physics/phys-200.

Burn Math Class: And Reinvent Mathematics for Yourself


Jason Wilkes - 2016
    In Burn Math Class, Jason Wilkes takes the traditional approach to how we learn math -- with its unwelcoming textbooks, unexplained rules, and authoritarian assertions-and sets it on fire. Focusing on how mathematics is created rather than on mathematical facts, Wilkes teaches the subject in a way that requires no memorization and no prior knowledge beyond addition and multiplication. From these simple foundations, Burn Math Class shows how mathematics can be (re)invented from scratch without preexisting textbooks and courses. We can discover math on our own through experimentation and failure, without appealing to any outside authority. When math is created free from arcane notations and pretentious jargon that hide the simplicity of mathematical concepts, it can be understood organically -- and it becomes fun! Following this unconventional approach, Burn Math Class leads the reader from the basics of elementary arithmetic to various "advanced" topics, such as time-dilation in special relativity, Taylor series, and calculus in infinite-dimensional spaces. Along the way, Wilkes argues that orthodox mathematics education has been teaching the subject backward: calculus belongs before many of its so-called prerequisites, and those prerequisites cannot be fully understood without calculus. Like the smartest, craziest teacher you've ever had, Wilkes guides you on an adventure in mathematical creation that will radically change the way you think about math. Revealing the beauty and simplicity of this timeless subject, Burn Math Class turns everything that seems difficult about mathematics upside down and sideways until you understand just how easy math can be.

Quantum Theology: Spiritual Implications of the New Physics


Diarmuid O'Murchu - 2004
    It is now revised to reflect the most recent advances in physics. From black holes to holograms, from relativity theory to the discovery of quarks, this book is an original and rich exposition of quantum theory and the way it unravels profound theological questions.

There Are No Electrons: Electronics for Earthlings


Kenn Amdahl - 1991
    Despite its title, it's not wild ranting pseudo-science to be dismissed by those with brains. Rather, Amdahl maintains that one need not understand quantum physics to grasp how electricity works in practical applications. To understand your toaster or your fax machine, it doesn't really matter whether there are electrons or not, and it's a lot easier and more fun to start with the toaster than with quarks and calculus. The book is mildly weird, often funny, always clear and easy to understand. It assumes the reader doesn't know a volt from a hole in the ground and gently leads him or her through integrated circuits, radio, oscillators and the basics of the digital revolution using examples that include green buffalo, microscopic beer parties, break-dancing chickens and naked Norwegian girls in rowboats. OK, it's more than mildly weird.The book has been reprinted numerous times since 1991 and has achieved minor cult status. Reviewed and praised in dozens of electronics and educational magazines, it is used as a text by major corporations, colleges, high schools, military schools and trade schools. It has been studied by education programs at colleges across the United States. This book was making wise cracks in the corner before anyone thought of designing books for dummies and idiots; some say it helped to inspire that industry.It may be the only "introduction to electronics books" with back cover comments by Dave Barry, Ray Bradbury, Clive Cussler, and George Garrett, as well as recomendations from Robert Hazen, Bob Mostafapour, Dr. Roger Young, Dr. Wayne Green, Scott Rundle, Brian Battles, Michelle Guido, Herb Reichert and Emil Venere. As Monitoring Times said, "Perhaps the best electronics book ever. If you'd like to learn about basic electronics but haven't been able to pull it off, get There Are No Electrons. Just trust us. Get the book."

Fundamentals of Thermodynamics


Richard E. Sonntag - 2002
    

The Artist and the Mathematician: The Story of Nicolas Bourbaki, the Genius Mathematician Who Never Existed


Amir D. Aczel - 2006
    Pure mathematics, the area of Bourbaki's work, seems on the surface to be an abstract field of human study with no direct connection with the real world. In reality, however, it is closely intertwined with the general culture that surrounds it. Major developments in mathematics have often followed important trends in popular culture; developments in mathematics have acted as harbingers of change in the surrounding human culture. The seeds of change, the beginnings of the revolution that swept the Western world in the early decades of the twentieth century — both in mathematics and in other areas — were sown late in the previous century. This is the story both of Bourbaki and the world that created him in that time. It is the story of an elaborate intellectual joke — because Bourbaki, one of the foremost mathematicians of his day — never existed.