Numerical Recipes in C: The Art of Scientific Computing


William H. Press - 1988
    In a self-contained manner it proceeds from mathematical and theoretical considerations to actual practical computer routines. With over 100 new routines bringing the total to well over 300, plus upgraded versions of the original routines, the new edition remains the most practical, comprehensive handbook of scientific computing available today.

Elementary Differential Equations And Boundary Value Problems


William E. Boyce - 1996
    Clear explanations are detailed with many current examples.

Schaum's Outline of Linear Algebra


Seymour Lipschutz - 1968
    This guide provides explanations of eigenvalues, eigenvectors, linear transformations, linear equations, vectors, and matrices.

The NPR Listener's Encyclopedia of Classical Music


Ted Libbey - 2006
    No music lover can pick up this one-volume compendium without becoming a more knowledgeable, discerning listener. • The sonata form revealed, and why it's been deeply satisfying for three centuries. • What to listen for in Brahms, a self-described Classicist who was one of music's great innovators. • Pizzicato, fioritura, parlando, glissando. • The transformative power of Toscanini–who earned more conducting the New York Philharmonic than his contemporary Babe Ruth made with the Yankees. • And throughout, more than 2,000 recommended recordings.Log on and listen. Created with Naxos, the world's largest classical music label, the book includes a unique Web site featuring more than 500 examples cited in the text. Look up barcarolle. First read about its swaying 6/8 meter and Venetian origins; then log on to the music Web site and hear it performed in Act IV of Offenbach's Les contes d'Hoffmann. If that whets your curiosity about Offenbach, click to hear the cancan in his La vie parisienne. All online samples are marked by an icon in the text.

The Scrum Master Training Manual: A Guide to the Professional Scrum Master (PSM) Exam


Nader K. Rad - 2015
    It’s helpful for learning Agile and Scrum, and also for a basic preparation for the PSM I exam (Professional Scrum Master level 1). It can also act as a simple reference for Scrum practitioners.

Elements of Information Theory


Thomas M. Cover - 1991
    Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory.All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points.The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated referencesNow current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.

Maths in Minutes: 200 Key Concepts Explained in an Instant


Paul Glendinning - 2012
    Each concept is quick and easy to remember, described by means of an easy-to-understand picture and a maximum 200-word explanation. Concepts span all of the key areas of mathematics, including Fundamentals of Mathematics, Sets and Numbers, Geometry, Equations, Limits, Functions and Calculus, Vectors and Algebra, Complex Numbers, Combinatorics, Number Theory, Metrics and Measures and Topology. Incredibly quick - clear artworks and simple explanations that can be easily remembered. Based on scientific research that the brain best absorbs information visually. Compact and portable format - the ideal, handy reference.

Reinforcement Learning: An Introduction


Richard S. Sutton - 1998
    Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

R for Data Science: Import, Tidy, Transform, Visualize, and Model Data


Hadley Wickham - 2016
    This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You’ll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you’ve learned along the way. You’ll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

Understanding Digital Signal Processing


Richard G. Lyons - 1996
    This second edition is appropriate as a supplementary (companion) text for any college-level course covering digital signal processing.

Mental Math: Tricks To Become A Human Calculator


Abhishek V.R. - 2017
    Just read this till the end You don’t have to buy this book. Just read this till end & you will learn something that will change the way you do math forever. Warning: I am revealing this secret only to the first set of readers who will buy this book & plan to put this secret back inside the book once I have enough sales. So read this until the very end while you still can.School taught you the wrong way to do mathThe way you were taught to do math, uses a lot of working memory. Working memory is the short term memory used to complete a mental task. You struggle because trying to do mental math the way you were taught in school, overloads your working memory. Let me show you what I mean with an example:Try to multiply the 73201 x 3. To do this you multiply the following:1 x 3 =0 x 3 =2 x 3 =3 x 3 =7 x 3 =This wasn’t hard, & it might have taken you just seconds to multiply the individual numbers. However, to get the final answer, you need to remember every single digit you calculated to put them back together. It takes effort to get the answer because you spend time trying to recall the numbers you already calculated. Math would be easier to do in your head if you didn’t have to remember so many numbers. Imagine when you tried to multiply 73201 x 3, if you could have come up with the answer, in the time it took you to multiply the individual numbers. Wouldn’t you have solved the problem faster than the time it would have taken you to punch in the numbers inside a calculator? Do the opposite of what you were taught in schoolThe secret of doing mental math is to calculate from left to right instead of from right to left. This is the opposite of what you were taught in school. This works so well because it frees your working memory almost completely. It is called the LR Method where LR stands for Left to Right.Lets try to do the earlier example where we multiplied 73201 x 3. This time multiply from left to right, so we get:7 x 3 = 213 x 3 = 93 x 2 = 60 x 3 = 03 x 1 = 3Notice that you started to call out the answer before you even finished the whole multiplication problem. You don’t have to remember a thing to recall & use later. So you end up doing math a lot faster. The Smart ChoiceYou could use what you learnt & apply it to solve math in the future. This might not be easy, because we just scratched the surface. I've already done the work for you. Why try to reinvent the wheel, when there is already a proven & tested system you can immediately apply. This book was first available in video format & has helped 10,000+ students from 132 countries. It is available at ofpad.com/mathcourse to enroll. This book was written to reach students who consume the information in text format. You can use the simple techniques in this book to do math faster than a calculator effortlessly in your head, even if you have no aptitude for math to begin with.Imagine waking up tomorrow being able to do lightning fast math in your head. Your family & friends will look at you like you are some kind of a genius. Since calculations are done in your head, you will acquire better mental habits in the process. So you will not just look like a genius. You will actually be one. Limited Time BonusWeekly training delivered through email for $97 is available for free as a bonus at the end of this book for the first set of readers. Once we have enough readers, this bonus will be charged $97. Why Price Is So LowThis book is priced at a ridiculous discount only to get our first set of readers. When we have enough readers the price will go up.

Group Theory in the Bedroom, and Other Mathematical Diversions


Brian Hayes - 2008
    (The also-rans that year included Tom Wolfe, Verlyn Klinkenborg, and Oliver Sacks.) Hayes's work in this genre has also appeared in such anthologies as The Best American Magazine Writing, The Best American Science and Nature Writing, and The Norton Reader. Here he offers us a selection of his most memorable and accessible pieces--including "Clock of Ages"--embellishing them with an overall, scene-setting preface, reconfigured illustrations, and a refreshingly self-critical "Afterthoughts" section appended to each essay.

Differential Geometry


Erwin Kreyszig - 1991
    With problems and solutions. Includes 99 illustrations.

Go in Practice


Matt Butcher - 2015
    Following a cookbook-style Problem/Solution/Discussion format, this practical handbook builds on the foundational concepts of the Go language and introduces specific strategies you can use in your day-to-day applications. You'll learn techniques for building web services, using Go in the cloud, testing and debugging, routing, network applications, and much more.

Algorithms


Sanjoy Dasgupta - 2006
    Emphasis is placed on understanding the crisp mathematical idea behind each algorithm, in a manner that is intuitive and rigorous without being unduly formal. Features include: The use of boxes to strengthen the narrative: pieces that provide historical context, descriptions of how the algorithms are used in practice, and excursions for the mathematically sophisticated.Carefully chosen advanced topics that can be skipped in a standard one-semester course, but can be covered in an advanced algorithms course or in a more leisurely two-semester sequence.An accessible treatment of linear programming introduces students to one of the greatest achievements in algorithms. An optional chapter on the quantum algorithm for factoring provides a unique peephole into this exciting topic. In addition to the text, DasGupta also offers a Solutions Manual, which is available on the Online Learning Center.Algorithms is an outstanding undergraduate text, equally informed by the historical roots and contemporary applications of its subject. Like a captivating novel, it is a joy to read. Tim Roughgarden Stanford University