Book picks similar to
Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning by Alan Julian Izenman
textbooks
statistics
data-mining
stats
The R Book
Michael J. Crawley - 2007
The R language is recognised as one of the most powerful and flexible statistical software packages, and it enables the user to apply many statistical techniques that would be impossible without such software to help implement such large data sets.
R for Everyone: Advanced Analytics and Graphics
Jared P. Lander - 2013
R has traditionally been difficult for non-statisticians to learn, and most R books assume far too much knowledge to be of help. R for Everyone is the solution. Drawing on his unsurpassed experience teaching new users, professional data scientist Jared P. Lander has written the perfect tutorial for anyone new to statistical programming and modeling. Organized to make learning easy and intuitive, this guide focuses on the 20 percent of R functionality you'll need to accomplish 80 percent of modern data tasks. Lander's self-contained chapters start with the absolute basics, offering extensive hands-on practice and sample code. You'll download and install R; navigate and use the R environment; master basic program control, data import, and manipulation; and walk through several essential tests. Then, building on this foundation, you'll construct several complete models, both linear and nonlinear, and use some data mining techniques. By the time you're done, you won't just know how to write R programs, you'll be ready to tackle the statistical problems you care about most. COVERAGE INCLUDES - Exploring R, RStudio, and R packages - Using R for math: variable types, vectors, calling functions, and more - Exploiting data structures, including data.frames, matrices, and lists - Creating attractive, intuitive statistical graphics - Writing user-defined functions - Controlling program flow with if, ifelse, and complex checks - Improving program efficiency with group manipulations - Combining and reshaping multiple datasets - Manipulating strings using R's facilities and regular expressions - Creating normal, binomial, and Poisson probability distributions - Programming basic statistics: mean, standard deviation, and t-tests - Building linear, generalized linear, and nonlinear models - Assessing the quality of models and variable selection - Preventing overfitting, using the Elastic Net and Bayesian methods - Analyzing univariate and multivariate time series data - Grouping data via K-means and hierarchical clustering - Preparing reports, slideshows, and web pages with knitr - Building reusable R packages with devtools and Rcpp - Getting involved with the R global community
Mathematical Statistics and Data Analysis
John A. Rice - 1988
The book's approach interweaves traditional topics with data analysis and reflects the use of the computer with close ties to the practice of statistics. The author stresses analysis of data, examines real problems with real data, and motivates the theory. The book's descriptive statistics, graphical displays, and realistic applications stand in strong contrast to traditional texts which are set in abstract settings.
Neural Networks and Deep Learning
Michael Nielsen - 2013
The book will teach you about:* Neural networks, a beautiful biologically-inspired programming paradigm which enables a computer to learn from observational data* Deep learning, a powerful set of techniques for learning in neural networksNeural networks and deep learning currently provide the best solutions to many problems in image recognition, speech recognition, and natural language processing. This book will teach you the core concepts behind neural networks and deep learning.
Automate This: How Algorithms Came to Rule Our World
Christopher Steiner - 2012
It used to be that to diagnose an illness, interpret legal documents, analyze foreign policy, or write a newspaper article you needed a human being with specific skills—and maybe an advanced degree or two. These days, high-level tasks are increasingly being handled by algorithms that can do precise work not only with speed but also with nuance. These “bots” started with human programming and logic, but now their reach extends beyond what their creators ever expected. In this fascinating, frightening book, Christopher Steiner tells the story of how algorithms took over—and shows why the “bot revolution” is about to spill into every aspect of our lives, often silently, without our knowledge. The May 2010 “Flash Crash” exposed Wall Street’s reliance on trading bots to the tune of a 998-point market drop and $1 trillion in vanished market value. But that was just the beginning. In Automate This, we meet bots that are driving cars, penning haiku, and writing music mistaken for Bach’s. They listen in on our customer service calls and figure out what Iran would do in the event of a nuclear standoff. There are algorithms that can pick out the most cohesive crew of astronauts for a space mission or identify the next Jeremy Lin. Some can even ingest statistics from baseball games and spit out pitch-perfect sports journalism indistinguishable from that produced by humans. The interaction of man and machine can make our lives easier. But what will the world look like when algorithms control our hospitals, our roads, our culture, and our national security? What happens to businesses when we automate judgment and eliminate human instinct? And what role will be left for doctors, lawyers, writers, truck drivers, and many others? Who knows—maybe there’s a bot learning to do your job this minute.
Calling Bullshit: The Art of Skepticism in a Data-Driven World
Carl T. Bergstrom - 2020
Now, two science professors give us the tools to dismantle misinformation and think clearly in a world of fake news and bad data.It's increasingly difficult to know what's true. Misinformation, disinformation, and fake news abound. Our media environment has become hyperpartisan. Science is conducted by press release. Startup culture elevates bullshit to high art. We are fairly well equipped to spot the sort of old-school bullshit that is based in fancy rhetoric and weasel words, but most of us don't feel qualified to challenge the avalanche of new-school bullshit presented in the language of math, science, or statistics. In Calling Bullshit, Professors Carl Bergstrom and Jevin West give us a set of powerful tools to cut through the most intimidating data.You don't need a lot of technical expertise to call out problems with data. Are the numbers or results too good or too dramatic to be true? Is the claim comparing like with like? Is it confirming your personal bias? Drawing on a deep well of expertise in statistics and computational biology, Bergstrom and West exuberantly unpack examples of selection bias and muddled data visualization, distinguish between correlation and causation, and examine the susceptibility of science to modern bullshit.We have always needed people who call bullshit when necessary, whether within a circle of friends, a community of scholars, or the citizenry of a nation. Now that bullshit has evolved, we need to relearn the art of skepticism.
Introduction to Machine Learning with Python: A Guide for Data Scientists
Andreas C. Müller - 2015
If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination.You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Muller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book.With this book, you'll learn:Fundamental concepts and applications of machine learningAdvantages and shortcomings of widely used machine learning algorithmsHow to represent data processed by machine learning, including which data aspects to focus onAdvanced methods for model evaluation and parameter tuningThe concept of pipelines for chaining models and encapsulating your workflowMethods for working with text data, including text-specific processing techniquesSuggestions for improving your machine learning and data science skills
The Drunkard's Walk: How Randomness Rules Our Lives
Leonard Mlodinow - 2008
From the classroom to the courtroom and from financial markets to supermarkets, Mlodinow's intriguing and illuminating look at how randomness, chance, and probability affect our daily lives will intrigue, awe, and inspire.
Applied Statistics and Probability for Engineers [With Free Access to Online Student Resources]
Douglas C. Montgomery - 1994
The text shows you how to use statistical methods to design and develop new products, and new manufacturing systems and processes. You'll gain a better understanding of how these methods are used in everyday work, and get a taste of practical engineering experience through real-world, engineering-based examples and exercises. Now revised, this Fourth Edition of "Applied Statistics and Probability for Engineers" features many new homework exercises, including a greater variation of problems and more computer problems.
Statistics Without Tears: An Introduction for Non-Mathematicians
Derek Rowntree - 1981
With it you can prime yourself with the key concepts of statistics before getting involved in the associated calculations. Using words and diagrams instead of figures, formulae and equations, Derek Rowntree makes statistics accessible to those who are non-mathematicians. And just to get you into the spirit of things. Rowntree has included questions in his argument; answer them as you go and you will be able to tell how far you have mastered the subject.
Everybody Lies: Big Data, New Data, and What the Internet Can Tell Us About Who We Really Are
Seth Stephens-Davidowitz - 2017
This staggering amount of information—unprecedented in history—can tell us a great deal about who we are—the fears, desires, and behaviors that drive us, and the conscious and unconscious decisions we make. From the profound to the mundane, we can gain astonishing knowledge about the human psyche that less than twenty years ago, seemed unfathomable.Everybody Lies offers fascinating, surprising, and sometimes laugh-out-loud insights into everything from economics to ethics to sports to race to sex, gender and more, all drawn from the world of big data. What percentage of white voters didn’t vote for Barack Obama because he’s black? Does where you go to school effect how successful you are in life? Do parents secretly favor boy children over girls? Do violent films affect the crime rate? Can you beat the stock market? How regularly do we lie about our sex lives and who’s more self-conscious about sex, men or women?Investigating these questions and a host of others, Seth Stephens-Davidowitz offers revelations that can help us understand ourselves and our lives better. Drawing on studies and experiments on how we really live and think, he demonstrates in fascinating and often funny ways the extent to which all the world is indeed a lab. With conclusions ranging from strange-but-true to thought-provoking to disturbing, he explores the power of this digital truth serum and its deeper potential—revealing biases deeply embedded within us, information we can use to change our culture, and the questions we’re afraid to ask that might be essential to our health—both emotional and physical. All of us are touched by big data everyday, and its influence is multiplying. Everybody Lies challenges us to think differently about how we see it and the world.
Superforecasting: The Art and Science of Prediction
Philip E. Tetlock - 2015
Unfortunately, people tend to be terrible forecasters. As Wharton professor Philip Tetlock showed in a landmark 2005 study, even experts’ predictions are only slightly better than chance. However, an important and underreported conclusion of that study was that some experts do have real foresight, and Tetlock has spent the past decade trying to figure out why. What makes some people so good? And can this talent be taught? In Superforecasting, Tetlock and coauthor Dan Gardner offer a masterwork on prediction, drawing on decades of research and the results of a massive, government-funded forecasting tournament. The Good Judgment Project involves tens of thousands of ordinary people—including a Brooklyn filmmaker, a retired pipe installer, and a former ballroom dancer—who set out to forecast global events. Some of the volunteers have turned out to be astonishingly good. They’ve beaten other benchmarks, competitors, and prediction markets. They’ve even beaten the collective judgment of intelligence analysts with access to classified information. They are "superforecasters." In this groundbreaking and accessible book, Tetlock and Gardner show us how we can learn from this elite group. Weaving together stories of forecasting successes (the raid on Osama bin Laden’s compound) and failures (the Bay of Pigs) and interviews with a range of high-level decision makers, from David Petraeus to Robert Rubin, they show that good forecasting doesn’t require powerful computers or arcane methods. It involves gathering evidence from a variety of sources, thinking probabilistically, working in teams, keeping score, and being willing to admit error and change course. Superforecasting offers the first demonstrably effective way to improve our ability to predict the future—whether in business, finance, politics, international affairs, or daily life—and is destined to become a modern classic.
Humble Pi: A Comedy of Maths Errors
Matt Parker - 2019
Most of the time this math works quietly behind the scenes . . . until it doesn't. All sorts of seemingly innocuous mathematical mistakes can have significant consequences.Math is easy to ignore until a misplaced decimal point upends the stock market, a unit conversion error causes a plane to crash, or someone divides by zero and stalls a battleship in the middle of the ocean.Exploring and explaining a litany of glitches, near misses, and mathematical mishaps involving the internet, big data, elections, street signs, lotteries, the Roman Empire, and an Olympic team, Matt Parker uncovers the bizarre ways math trips us up, and what this reveals about its essential place in our world. Getting it wrong has never been more fun.
Learning SAS by Example: A Programmer's Guide
Ron Cody - 2007
In an instructive and conversational tone, Cody clearly explains how to program SAS, illustrating with one or more real-life examples and giving a detailed description of how the program works.
A Primer of Ecological Statistics
Nicholas J. Gotelli - 2004
The book emphasizes a general introduction to probability theory and provides a detailed discussion of specific designs and analyses that are typically encountered in ecology and environmental science. Appropriate for use as either a stand-alone or supplementary text for upper-division undergraduate or graduate courses in ecological and environmental statistics, ecology, environmental science, environmental studies, or experimental design, the Primer also serves as a resource for environmental professionals who need to use and interpret statistics daily but have little or no formal training in the subject.