Book picks similar to
Data Science at the Command Line: Obtain, Scrub, Explore, and Model Data with Unix Power Tools by Jeroen Janssens
data-science
programming
work
command-line
Microsoft Excel Data Analysis and Business Modeling
Wayne L. Winston - 2004
For more than a decade, well-known consultant and business professor Wayne Winston has been teaching corporate clients and MBA students the most effective ways to use Microsoft Excel for data analysis, modeling, and decision making. Now this award-winning educator shares the best of his classroom experience in this practical, business-focused guide. Each chapter advances your data analysis and modeling expertise using real-world examples and learn-by-doing exercises. You also get all the book’s problem-and-solution files on CD—for all the practice you need to solve complex problems and work smarter with Excel.Learn how to solve real business problems with Excel!Create best, worst, and most-likely scenarios for sales Calculate how long it would take to recoup a project’s startup costs Plan personal finances, such as computing loan terms or saving for retirement Estimate a product’s demand curve Simulate stock performance over a year Determine which product mix will yield the greatest profits Interpret the effects of price and advertising on sales Assign a dollar value to customer loyalty Manage inventory and order quantities with precision Create customer service queues with short wait times Estimate the probabilities of equipment failure Model business uncertainties Get new perspectives on data with PivotTable dynamic views Help predict quarterly revenue, outcomes of sporting events, presidential elections, and more! On the CD:Practice files for all the book’s exercises Solutions for problem sets Fully searchable eBook A Note Regarding the CD or DVDThe print version of this book ships with a CD or DVD. For those customers purchasing one of the digital formats in which this book is available, we are pleased to offer the CD/DVD content as a free download via O'Reilly Media's Digital Distribution services. To download this content, please visit O'Reilly's web site, search for the title of this book to find its catalog page, and click on the link below the cover image (Examples, Companion Content, or Practice Files). Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.
The Wall Street Journal Guide to Information Graphics: The Dos and Don'ts of Presenting Data, Facts, and Figures
Dona M. Wong - 2009
Yet information graphics is rarely taught in schools or is the focus of on-the-job training. Now, for the first time, Dona M. Wong, a student of the information graphics pioneer Edward Tufte, makes this material available for all of us. In this book, you will learn:to choose the best chart that fits your data;the most effective way to communicate with decision makers when you have five minutes of their time;how to chart currency fluctuations that affect global business;how to use color effectively;how to make a graphic “colorful” even if only black and white are available.The book is organized in a series of mini-workshops backed up with illustrated examples, so not only will you learn what works and what doesn’t but also you can see the dos and don’ts for yourself. This is an invaluable reference work for students and professional in all fields.
Neural Networks: A Comprehensive Foundation
Simon Haykin - 1994
Introducing students to the many facets of neural networks, this text provides many case studies to illustrate their real-life, practical applications.
Pattern Recognition and Machine Learning
Christopher M. Bishop - 2006
However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Programming Windows 8 Apps with HTML, CSS, and JavaScript
Kraig Brockschmidt - 2012
Artificial Intelligence: A Guide for Thinking Humans
Melanie Mitchell - 2019
The award-winning author Melanie Mitchell, a leading computer scientist, now reveals AI’s turbulent history and the recent spate of apparent successes, grand hopes, and emerging fears surrounding it.In Artificial Intelligence, Mitchell turns to the most urgent questions concerning AI today: How intelligent—really—are the best AI programs? How do they work? What can they actually do, and when do they fail? How humanlike do we expect them to become, and how soon do we need to worry about them surpassing us? Along the way, she introduces the dominant models of modern AI and machine learning, describing cutting-edge AI programs, their human inventors, and the historical lines of thought underpinning recent achievements. She meets with fellow experts such as Douglas Hofstadter, the cognitive scientist and Pulitzer Prize–winning author of the modern classic Gödel, Escher, Bach, who explains why he is “terrified” about the future of AI. She explores the profound disconnect between the hype and the actual achievements in AI, providing a clear sense of what the field has accomplished and how much further it has to go.Interweaving stories about the science of AI and the people behind it, Artificial Intelligence brims with clear-sighted, captivating, and accessible accounts of the most interesting and provocative modern work in the field, flavored with Mitchell’s humor and personal observations. This frank, lively book is an indispensable guide to understanding today’s AI, its quest for “human-level” intelligence, and its impact on the future for us all.
Deep Learning with Python
François Chollet - 2017
It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.
Learning Python
Mark Lutz - 2003
Python is considered easy to learn, but there's no quicker way to mastery of the language than learning from an expert teacher. This edition of "Learning Python" puts you in the hands of two expert teachers, Mark Lutz and David Ascher, whose friendly, well-structured prose has guided many a programmer to proficiency with the language. "Learning Python," Second Edition, offers programmers a comprehensive learning tool for Python and object-oriented programming. Thoroughly updated for the numerous language and class presentation changes that have taken place since the release of the first edition in 1999, this guide introduces the basic elements of the latest release of Python 2.3 and covers new features, such as list comprehensions, nested scopes, and iterators/generators. Beyond language features, this edition of "Learning Python" also includes new context for less-experienced programmers, including fresh overviews of object-oriented programming and dynamic typing, new discussions of program launch and configuration options, new coverage of documentation sources, and more. There are also new use cases throughout to make the application of language features more concrete. The first part of "Learning Python" gives programmers all the information they'll need to understand and construct programs in the Python language, including types, operators, statements, classes, functions, modules and exceptions. The authors then present more advanced material, showing how Python performs common tasks by offering real applications and the libraries available for those applications. Each chapter ends with a series of exercises that will test your Python skills and measure your understanding."Learning Python," Second Edition is a self-paced book that allows readers to focus on the core Python language in depth. As you work through the book, you'll gain a deep and complete understanding of the Python language that will help you to understand the larger application-level examples that you'll encounter on your own. If you're interested in learning Python--and want to do so quickly and efficiently--then "Learning Python," Second Edition is your best choice.
Beautiful Visualization: Looking at Data through the Eyes of Experts
Julie Steele - 2010
Think of the familiar map of the New York City subway system, or a diagram of the human brain. Successful visualizations are beautiful not only for their aesthetic design, but also for elegant layers of detail that efficiently generate insight and new understanding.This book examines the methods of two dozen visualization experts who approach their projects from a variety of perspectives -- as artists, designers, commentators, scientists, analysts, statisticians, and more. Together they demonstrate how visualization can help us make sense of the world.Explore the importance of storytelling with a simple visualization exerciseLearn how color conveys information that our brains recognize before we're fully aware of itDiscover how the books we buy and the people we associate with reveal clues to our deeper selvesRecognize a method to the madness of air travel with a visualization of civilian air trafficFind out how researchers investigate unknown phenomena, from initial sketches to published papers Contributors include:Nick Bilton, Michael E. Driscoll, Jonathan Feinberg, Danyel Fisher, Jessica Hagy, Gregor Hochmuth, Todd Holloway, Noah Iliinsky, Eddie Jabbour, Valdean Klump, Aaron Koblin, Robert Kosara, Valdis Krebs, JoAnn Kuchera-Morin et al., Andrew Odewahn, Adam Perer, Anders Persson, Maximilian Schich, Matthias Shapiro, Julie Steele, Moritz Stefaner, Jer Thorp, Fernanda Viegas, Martin Wattenberg, and Michael Young.
SQL Antipatterns
Bill Karwin - 2010
Now he's sharing his collection of antipatterns--the most common errors he's identified in those thousands of requests for help. Most developers aren't SQL experts, and most of the SQL that gets used is inefficient, hard to maintain, and sometimes just plain wrong. This book shows you all the common mistakes, and then leads you through the best fixes. What's more, it shows you what's behind these fixes, so you'll learn a lot about relational databases along the way. Each chapter in this book helps you identify, explain, and correct a unique and dangerous antipattern. The four parts of the book group the antipatterns in terms of logical database design, physical database design, queries, and application development. The chances are good that your application's database layer already contains problems such as Index Shotgun, Keyless Entry, Fear of the Unknown, and Spaghetti Query. This book will help you and your team find them. Even better, it will also show you how to fix them, and how to avoid these and other problems in the future. SQL Antipatterns gives you a rare glimpse into an SQL expert's playbook. Now you can stamp out these common database errors once and for all. Whatever platform or programming language you use, whether you're a junior programmer or a Ph.D., SQL Antipatterns will show you how to design and build databases, how to write better database queries, and how to integrate SQL programming with your application like an expert. You'll also learn the best and most current technology for full-text search, how to design code that is resistant to SQL injection attacks, and other techniques for success.
Hot Topics Flashcards for Passing the PMP and CAPM Exam
Rita Mulcahy - 2003
Now you can study at the office, on a plane or even in your car with RMC’s portable and extremely valuable Hot Topics PMP® Exam Flashcards—in hard copy or audio CD format. Over 300 of the most important and difficult to recall PMP® exam-related terms and concepts are now available for study as you drive, fly or take your lunch break. Order them both! This product is aligned with the PMBOK® Guide Third Edition (2005).
Reinforcement Learning: An Introduction
Richard S. Sutton - 1998
Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.
Visual Thinking for Design
Colin Ware - 2008
Fortunately, results from the relatively new science of human visual perception provide valuable guidance. In Visual Thinking for Design, Colin Ware takes what we now know about perception, cognition, and attention and transforms it into concrete advice that designers can directly apply. He demonstrates how designs can be considered as tools for cognition - extensions of the viewer’s brain in much the same way that a hammer is an extension of the user’s hand. Experienced professional designers and students alike will learn how to maximize the power of the information tools they design for the people who use them.• Presents visual thinking as a complex process that can be supported in every stage using specific design techniques.• Provides practical, task-oriented information for designers and software developers charged with design responsibilities.• Includes hundreds of examples, many in the form of integrated text and full-color diagrams.• Steeped in the principles of “active vision,” which views graphic designs as cognitive tools.