Introducing Infinity: A Graphic Guide


Brian Clegg - 2012
    The ancient Greeks were so horrified by the implications of an endless number that they drowned the man who gave away the secret. And a German mathematician was driven mad by the repercussions of his discovery of transfinite numbers. Brian Clegg and Oliver Pugh’s brilliant graphic tour of infinity features a cast of characters ranging from Archimedes and Pythagoras to al-Khwarizmi, Fibonacci, Galileo, Newton, Leibniz, Cantor, Venn, Gödel and Mandelbrot, and shows how infinity has challenged the finest minds of science and mathematics. Prepare to enter a world of paradox.

Differential Equations with Applications and Historical Notes


George F. Simmons - 1972
    Simmons advocates a careful approach to the subject, covering such topics as the wave equation, Gauss's hypergeometric function, the gamma function and the basic problems of the calculus of variations in an explanatory fashions - ensuring that students fully understand and appreciate the topics.

A Brief History of Mathematical Thought: Key concepts and where they come from


Luke Heaton - 2015
    In A Brief History of Mathematical Thought, Luke Heaton explores how the language of mathematics has evolved over time, enabling new technologies and shaping the way people think. From stone-age rituals to algebra, calculus, and the concept of computation, Heaton shows the enormous influence of mathematics on science, philosophy and the broader human story. The book traces the fascinating history of mathematical practice, focusing on the impact of key conceptual innovations. Its structure of thirteen chapters split between four sections is dictated by a combination of historical and thematic considerations. In the first section, Heaton illuminates the fundamental concept of number. He begins with a speculative and rhetorical account of prehistoric rituals, before describing the practice of mathematics in Ancient Egypt, Babylon and Greece. He then examines the relationship between counting and the continuum of measurement, and explains how the rise of algebra has dramatically transformed our world. In the second section, he explores the origins of calculus and the conceptual shift that accompanied the birth of non-Euclidean geometries. In the third section, he examines the concept of the infinite and the fundamentals of formal logic. Finally, in section four, he considers the limits of formal proof, and the critical role of mathematics in our ongoing attempts to comprehend the world around us. The story of mathematics is fascinating in its own right, but Heaton does more than simply outline a history of mathematical ideas. More importantly, he shows clearly how the history and philosophy of maths provides an invaluable perspective on human nature.

The Prime Number Conspiracy: The Biggest Ideas in Math from Quanta


Thomas Lin - 2018
    The stories show that, as James Gleick puts it in the foreword, "inspiration strikes willy-nilly." One researcher thinks of quantum chaotic systems at a bus stop; another suddenly realizes a path to proving a theorem of number theory while in a friend's backyard; a statistician has a "bathroom sink epiphany" and discovers the key to solving the Gaussian correlation inequality. Readers of The Prime Number Conspiracy, says Quanta editor-in-chief Thomas Lin, are headed on "breathtaking intellectual journeys to the bleeding edge of discovery strapped to the narrative rocket of humanity's never-ending pursuit of knowledge."Quanta is the only popular publication that offers in-depth coverage of the latest breakthroughs in understanding our mathematical universe. It communicates mathematics by taking it seriously, wrestling with difficult concepts and clearly explaining them in a way that speaks to our innate curiosity about our world and ourselves. Readers of this volume will learn that prime numbers have decided preferences about the final digits of the primes that immediately follow them (the "conspiracy" of the title); consider whether math is the universal language of nature (allowing for "a unified theory of randomness"); discover surprising solutions (including a pentagon tiling proof that solves a century-old math problem); ponder the limits of computation; measure infinity; and explore the eternal question "Is mathematics good for you?"ContributorsAriel Bleicher, Robbert Dijkgraaf, Kevin Hartnett, Erica Klarreich, Thomas Lin, John Pavlus, Siobhan Roberts, Natalie WolchoverCopublished with Quanta Magazine

How to Build a Brain and 34 Other Really Interesting Uses of Maths


Richard Elwes - 2010
    You'll find out how to unknot your DNA, how to count like a supercomputer and how to become famous for solving mathematics' most challenging problem.

Using Econometrics: A Practical Guide


A.H. Studenmund - 1987
    "Using Econometrics: A Practical Guide "provides readers with a practical introduction that combines single-equation linear regression analysis with real-world examples and exercises. This text also avoids complex matrix algebra and calculus, making it an ideal text for beginners. New problem sets and added support make "Using Econometrics" modern and easier to use.

Labyrinths of Reason: Paradox, Puzzles and the Frailty of Knowledge


William Poundstone - 1988
    This sharply intelligent, consistently provocative book takes the reader on an astonishing, thought-provoking voyage into the realm of delightful uncertainty--a world of paradox in which logical argument leads to contradiction and common sense is seemingly rendered irrelevant.

Mind Tools: The Five Levels of Mathematical Reality


Rudy Rucker - 1987
    Reveals mathematics' great power as an alternative language for understanding things and explores such concepts as logic as a computing tool, digital versus analog processes and communication as information transmission.

Math Geek: From Klein Bottles to Chaos Theory, a Guide to the Nerdiest Math Facts, Theorems, and Equations


Raphael Rosen - 2015
    From manhole covers to bubbles to subway maps, each page gives you a glimpse of the world through renowned mathematicians' eyes and reveals how their theorems and equations can be applied to nearly everything you encounter. Covering dozens of your favorite math topics, you'll find fascinating answers to questions like:How are the waiting times for buses determined?Why is Romanesco Broccoli so mesmerizing?How do you divide a cake evenly?Should you run or walk to avoid rain showers?Filled with compelling mathematical explanations, Math Geek sheds light on the incredible world of numbers hidden deep within your day-to-day life.

Mathletics: How Gamblers, Managers, and Sports Enthusiasts Use Mathematics in Baseball, Basketball, and Football


Wayne L. Winston - 2009
    How does professional baseball evaluate hitters? Is a singles hitter like Wade Boggs more valuable than a power hitter like David Ortiz? Should NFL teams pass or run more often on first downs? Could professional basketball have used statistics to expose the crooked referee Tim Donaghy? Does money buy performance in professional sports?In Mathletics, Wayne Winston describes the mathematical methods that top coaches and managers use to evaluate players and improve team performance, and gives math enthusiasts the practical tools they need to enhance their understanding and enjoyment of their favorite sports--and maybe even gain the outside edge to winning bets. Mathletics blends fun math problems with sports stories of actual games, teams, and players, along with personal anecdotes from Winston's work as a sports consultant. Winston uses easy-to-read tables and illustrations to illuminate the techniques and ideas he presents, and all the necessary math concepts--such as arithmetic, basic statistics and probability, and Monte Carlo simulations--are fully explained in the examples.After reading Mathletics, you will understand why baseball teams should almost never bunt, why football overtime systems are unfair, why points, rebounds, and assists aren't enough to determine who's the NBA's best player--and much, much more.

Mental Math: Tricks To Become A Human Calculator


Abhishek V.R. - 2017
    Just read this till the end You don’t have to buy this book. Just read this till end & you will learn something that will change the way you do math forever. Warning: I am revealing this secret only to the first set of readers who will buy this book & plan to put this secret back inside the book once I have enough sales. So read this until the very end while you still can.School taught you the wrong way to do mathThe way you were taught to do math, uses a lot of working memory. Working memory is the short term memory used to complete a mental task. You struggle because trying to do mental math the way you were taught in school, overloads your working memory. Let me show you what I mean with an example:Try to multiply the 73201 x 3. To do this you multiply the following:1 x 3 =0 x 3 =2 x 3 =3 x 3 =7 x 3 =This wasn’t hard, & it might have taken you just seconds to multiply the individual numbers. However, to get the final answer, you need to remember every single digit you calculated to put them back together. It takes effort to get the answer because you spend time trying to recall the numbers you already calculated. Math would be easier to do in your head if you didn’t have to remember so many numbers. Imagine when you tried to multiply 73201 x 3, if you could have come up with the answer, in the time it took you to multiply the individual numbers. Wouldn’t you have solved the problem faster than the time it would have taken you to punch in the numbers inside a calculator? Do the opposite of what you were taught in schoolThe secret of doing mental math is to calculate from left to right instead of from right to left. This is the opposite of what you were taught in school. This works so well because it frees your working memory almost completely. It is called the LR Method where LR stands for Left to Right.Lets try to do the earlier example where we multiplied 73201 x 3. This time multiply from left to right, so we get:7 x 3 = 213 x 3 = 93 x 2 = 60 x 3 = 03 x 1 = 3Notice that you started to call out the answer before you even finished the whole multiplication problem. You don’t have to remember a thing to recall & use later. So you end up doing math a lot faster. The Smart ChoiceYou could use what you learnt & apply it to solve math in the future. This might not be easy, because we just scratched the surface. I've already done the work for you. Why try to reinvent the wheel, when there is already a proven & tested system you can immediately apply. This book was first available in video format & has helped 10,000+ students from 132 countries. It is available at ofpad.com/mathcourse to enroll. This book was written to reach students who consume the information in text format. You can use the simple techniques in this book to do math faster than a calculator effortlessly in your head, even if you have no aptitude for math to begin with.Imagine waking up tomorrow being able to do lightning fast math in your head. Your family & friends will look at you like you are some kind of a genius. Since calculations are done in your head, you will acquire better mental habits in the process. So you will not just look like a genius. You will actually be one. Limited Time BonusWeekly training delivered through email for $97 is available for free as a bonus at the end of this book for the first set of readers. Once we have enough readers, this bonus will be charged $97. Why Price Is So LowThis book is priced at a ridiculous discount only to get our first set of readers. When we have enough readers the price will go up.

Steam and Gas Turbines and Power Plant Engineering


R. Yadav
    

Asimov on Numbers


Isaac Asimov - 1978
    From man's first act of counting to higher mathematics, from the smallest living creature to the dazzling reaches of outer space, Asimov is a master at "explaining complex material better than any other living person." (The New York Times) You'll learn: HOW to make a trillion seem small; WHY imaginary numbers are real; THE real size of the universe - in photons; WHY the zero isn't "good for nothing;" AND many other marvelous discoveries, in ASIMOV ON NUMBERS.

Play with Graphs - Skills in Mathematics for JEE Main and Advanced


Amit M. Agarwal - 2015
    

Dialogues on Mathematics


Alfréd Rényi - 1967