Math Riddles For Smart Kids: Math Riddles and Brain Teasers that Kids and Families will Love


M. Prefontaine - 2017
    It is a collection of 150 brain teasing math riddles and puzzles. Their purpose is to make children think and stretch the mind. They are designed to test logic, lateral thinking as well as memory and to engage the brain in seeing patterns and connections between different things and circumstances. They are laid out in three chapters which get more difficult as you go through the book, in the author’s opinion at least. The answers are at the back of the book if all else fails. These are more difficult riddles and are designed to be attempted by children from 10 years onwards, as well as participation from the rest of the family. Tags: Riddles and brain teasers, riddles and trick questions, riddles book, riddles book for kids, riddles for kids, riddles for kids aged 9-12, riddles and puzzles, jokes and riddles, jokes book, jokes book for kids, jokes children, jokes for kids, jokes kids, puzzle book

Introducing Infinity: A Graphic Guide


Brian Clegg - 2012
    The ancient Greeks were so horrified by the implications of an endless number that they drowned the man who gave away the secret. And a German mathematician was driven mad by the repercussions of his discovery of transfinite numbers. Brian Clegg and Oliver Pugh’s brilliant graphic tour of infinity features a cast of characters ranging from Archimedes and Pythagoras to al-Khwarizmi, Fibonacci, Galileo, Newton, Leibniz, Cantor, Venn, Gödel and Mandelbrot, and shows how infinity has challenged the finest minds of science and mathematics. Prepare to enter a world of paradox.

Mathematics 1001: Absolutely Everything That Matters in Mathematics in 1001 Bite-Sized Explanations


Richard Elwes - 2010
    Distilled into 1001 mini-essays arranged thematically, this unique book moves steadily from the basics through to the most advanced areas of math, making it the ideal guide for both the beginner and the math wiz.The book covers all of the fundamental mathematical disciplines:Geometry Numbers Analysis Logic Algebra Probability and statistics Applied mathematics Discrete mathematics Games and recreational mathematics Philosophy and metamathematicsExpert mathematician Richard Elwes explains difficult concepts in the simplest language with a minimum of jargon. Along the way he reveals such mathematical magic as how to count to 1023 using just 10 fingers and how to make an unbreakable code.Enlightening and entertaining, Mathematics 1001 makes the language of math come alive.

Inorganic Chemistry


Catherine E. Housecroft - 2001
    It offers superior coverage of all key areas, including descriptive chemistry, MO theory, bonding, and physical inorganic chemistry. Chapter topics are presented in logical order and include: basic concepts; nuclear properties; an introduction to molecular symmetry; bonding in polyatomic molecules; structures and energetics of metallic and ionic solids; acids, bases, and ions in aqueous solution; reduction and oxidation; non-aqueous media; and hydrogen. Four special topic chapters, chosen for their currency and interest, conclude the book. For researchers seeking the latest information in the field of inorganic chemistry.

The Art of the Infinite: The Pleasures of Mathematics


Robert M. Kaplan - 1980
    The Times called it elegant, discursive, and littered with quotes and allusions from Aquinas via Gershwin to Woolf and The Philadelphia Inquirer praised it as absolutely scintillating. In this delightful new book, Robert Kaplan, writing together with his wife Ellen Kaplan, once again takes us on a witty, literate, and accessible tour of the world of mathematics. Where The Nothing That Is looked at math through the lens of zero, The Art of the Infinite takes infinity, in its countless guises, as a touchstone for understanding mathematical thinking. Tracing a path from Pythagoras, whose great Theorem led inexorably to a discovery that his followers tried in vain to keep secret (the existence of irrational numbers); through Descartes and Leibniz; to the brilliant, haunted Georg Cantor, who proved that infinity can come in different sizes, the Kaplans show how the attempt to grasp the ungraspable embodies the essence of mathematics. The Kaplans guide us through the Republic of Numbers, where we meet both its upstanding citizens and more shadowy dwellers; and we travel across the plane of geometry into the unlikely realm where parallel lines meet. Along the way, deft character studies of great mathematicians (and equally colorful lesser ones) illustrate the opposed yet intertwined modes of mathematical thinking: the intutionist notion that we discover mathematical truth as it exists, and the formalist belief that math is true because we invent consistent rules for it. Less than All, wrote William Blake, cannot satisfy Man. The Art of the Infinite shows us some of the ways that Man has grappled with All, and reveals mathematics as one of the most exhilarating expressions of the human imagination.

The Humongous Book of Calculus Problems


W. Michael Kelley - 2007
    Not anymore. The best-selling author of The Complete Idiot's Guide® to Calculus has taken what appears to be a typical calculus workbook, chock full of solved calculus problems, and made legible notes in the margins, adding missing steps and simplifying solutions. Finally, everything is made perfectly clear. Students will be prepared to solve those obscure problems that were never discussed in class but always seem to find their way onto exams.--Includes 1,000 problems with comprehensive solutions--Annotated notes throughout the text clarify what's being asked in each problem and fill in missing steps--Kelley is a former award-winning calculus teacher

The Analysis of Biological Data


Michael C. Whitlock - 2008
    To reach this unique audience, Whitlock and Schluter motivate learning with interesting biological and medical examples; they emphasize intuitive understanding; and they focus on real data. The book covers basic topics in introductory statistics, including graphs, confidence intervals, hypothesis testing, comparison of means, regression, and designing experiments. It also introduces the principles behind such modern topics as likelihood, linear models, meta-analysis and computer-intensive methods. Instructors and students consistently praise the book's clear and engaging writing, strong visualization techniques, and its variety of fascinating and relevant biological examples.

E=mc²: A Biography of the World's Most Famous Equation


David Bodanis - 2000
    Just about everyone has at least heard of Albert Einstein's formulation of 1905, which came into the world as something of an afterthought. But far fewer can explain his insightful linkage of energy to mass. David Bodanis offers an easily grasped gloss on the equation. Mass, he writes, "is simply the ultimate type of condensed or concentrated energy," whereas energy "is what billows out as an alternate form of mass under the right circumstances." Just what those circumstances are occupies much of Bodanis's book, which pays homage to Einstein and, just as important, to predecessors such as Maxwell, Faraday, and Lavoisier, who are not as well known as Einstein today. Balancing writerly energy and scholarly weight, Bodanis offers a primer in modern physics and cosmology, explaining that the universe today is an expression of mass that will, in some vastly distant future, one day slide back to the energy side of the equation, replacing the "dominion of matter" with "a great stillness"--a vision that is at once lovely and profoundly frightening. Without sliding into easy psychobiography, Bodanis explores other circumstances as well; namely, Einstein's background and character, which combined with a sterling intelligence to afford him an idiosyncratic view of the way things work--a view that would change the world. --Gregory McNamee

How to Think About Analysis


Lara Alcock - 2014
    It is elegant, clever and rewarding to learn, but it is hard. Even the best students find it challenging, and those who are unprepared often find it incomprehensible at first. This book aims to ensure that no student need be unprepared. It is not like other Analysis books. It is not a textbook containing standard content. Rather, it is designed to be read before arriving at university and/or before starting an Analysis course, or as a companion text once a course is begun. It provides a friendly and readable introduction to the subject by building on the students existing understanding of six key topics: sequences, series, continuity, differentiability, integrability and the real numbers. It explains how mathematicians develop and use sophisticated formal versions of these ideas, and provides a detailed introduction to the central definitions, theorems and proofs, pointing out typical areas of difficulty and confusion and explaining how to overcome these. The book also provides study advice focused on the skills that students need if they are to build on this introduction and learn successfully in their own Analysis courses: it explains how to understand definitions, theorems and proofs by relating them to examples and diagrams, how to think productively about proofs, and how theories are taught in lectures and books on advanced mathematics. It also offers practical guidance on strategies for effective study planning. The advice throughout is research-based and is presented in an engaging style that will be accessible to students who are new to advanced abstract mathematics.

Contemporary Nutrition


Gordon M. Wardlaw - 1992
    It provides students who lack a strong science background the ideal balance of reliable nutrition information and practical consumer-oriented knowledge.

Calculus for Dummies


Mark Ryan - 2003
    Others who have no intention of ever studying the subject have this notion that calculus is impossibly difficult unless you happen to be a direct descendant of Einstein. Well, the good news is that you can master calculus. It's not nearly as tough as its mystique would lead you to think. Much of calculus is really just very advanced algebra, geometry, and trig. It builds upon and is a logical extension of those subjects. If you can do algebra, geometry, and trig, you can do calculus.Calculus For Dummies is intended for three groups of readers:Students taking their first calculus course - If you're enrolled in a calculus course and you find your textbook less than crystal clear, this is the book for you. It covers the most important topics in the first year of calculus: differentiation, integration, and infinite series.Students who need to brush up on their calculus to prepare for other studies - If you've had elementary calculus, but it's been a couple of years and you want to review the concepts to prepare for, say, some graduate program, Calculus For Dummies will give you a thorough, no-nonsense refresher course.Adults of all ages who'd like a good introduction to the subject - Non-student readers will find the book's exposition clear and accessible. Calculus For Dummies takes calculus out of the ivory tower and brings it down to earth. This is a user-friendly math book. Whenever possible, the author explains the calculus concepts by showing you connections between the calculus ideas and easier ideas from algebra and geometry. Then, you'll see how the calculus concepts work in concrete examples. All explanations are in plain English, not math-speak. Calculus For Dummies covers the following topics and more:Real-world examples of calculus The two big ideas of calculus: differentiation and integration Why calculus works Pre-algebra and algebra review Common functions and their graphs Limits and continuity Integration and approximating area Sequences and series Don't buy the misconception. Sure calculus is difficult - but it's manageable, doable. You made it through algebra, geometry, and trigonometry. Well, calculus just picks up where they leave off - it's simply the next step in a logical progression.

The C# Player's Guide


R.B. Whitaker - 2012
    

The Principia: Mathematical Principles of Natural Philosophy


Isaac Newton - 1687
    Even after more than three centuries and the revolutions of Einsteinian relativity and quantum mechanics, Newtonian physics continues to account for many of the phenomena of the observed world, and Newtonian celestial dynamics is used to determine the orbits of our space vehicles.This completely new translation, the first in 270 years, is based on the third (1726) edition, the final revised version approved by Newton; it includes extracts from the earlier editions, corrects errors found in earlier versions, and replaces archaic English with contemporary prose and up-to-date mathematical forms. Newton's principles describe acceleration, deceleration, and inertial movement; fluid dynamics; and the motions of the earth, moon, planets, and comets. A great work in itself, the Principia also revolutionized the methods of scientific investigation. It set forth the fundamental three laws of motion and the law of universal gravity, the physical principles that account for the Copernican system of the world as emended by Kepler, thus effectively ending controversy concerning the Copernican planetary system.The illuminating Guide to the Principia by I. Bernard Cohen, along with his and Anne Whitman's translation, will make this preeminent work truly accessible for today's scientists, scholars, and students.

Blueprints Obstetrics & Gynecology


Tamara L. Callahan - 1997
    This popular Blueprints book has been refined and updated while keeping the concise, organized style and clinical high-yield content of previous editions. Features include USMLE-style questions and answers with full explanations; Key Points in every section; and a color-enhanced design that increases the usefulness of figures and tables.This edition's completely revised art program includes many additional illustrations. Each chapter in this edition ends with evidence-based references (journals) for students to do additional reading/research.

The World of Mathematics: A Four-Volume Set


James Roy Newman - 1956
    It comprises non-technical essays on every aspect of the vast subject, including articles by scores of eminent mathematicians and other thinkers.