Types and Programming Languages


Benjamin C. Pierce - 2002
    The study of type systems--and of programming languages from a type-theoretic perspective--has important applications in software engineering, language design, high-performance compilers, and security.This text provides a comprehensive introduction both to type systems in computer science and to the basic theory of programming languages. The approach is pragmatic and operational; each new concept is motivated by programming examples and the more theoretical sections are driven by the needs of implementations. Each chapter is accompanied by numerous exercises and solutions, as well as a running implementation, available via the Web. Dependencies between chapters are explicitly identified, allowing readers to choose a variety of paths through the material.The core topics include the untyped lambda-calculus, simple type systems, type reconstruction, universal and existential polymorphism, subtyping, bounded quantification, recursive types, kinds, and type operators. Extended case studies develop a variety of approaches to modeling the features of object-oriented languages.

The Nature of Code


Daniel Shiffman - 2012
    Readers will progress from building a basic physics engine to creating intelligent moving objects and complex systems, setting the foundation for further experiments in generative design. Subjects covered include forces, trigonometry, fractals, cellular automata, self-organization, and genetic algorithms. The book's examples are written in Processing, an open-source language and development environment built on top of the Java programming language. On the book's website (http://www.natureofcode.com), the examples run in the browser via Processing's JavaScript mode.

Hacking: The Art of Exploitation


Jon Erickson - 2003
    This book explains the technical aspects of hacking, including stack based overflows, heap based overflows, string exploits, return-into-libc, shellcode, and cryptographic attacks on 802.11b.

Hands-On Machine Learning with Scikit-Learn and TensorFlow


Aurélien Géron - 2017
    Now that machine learning is thriving, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn how to use a range of techniques, starting with simple Linear Regression and progressing to Deep Neural Networks. If you have some programming experience and you’re ready to code a machine learning project, this guide is for you.This hands-on book shows you how to use:Scikit-Learn, an accessible framework that implements many algorithms efficiently and serves as a great machine learning entry pointTensorFlow, a more complex library for distributed numerical computation, ideal for training and running very large neural networksPractical code examples that you can apply without learning excessive machine learning theory or algorithm details

Computer Systems: A Programmer's Perspective


Randal E. Bryant - 2002
    Often, computer science and computer engineering curricula don't provide students with a concentrated and consistent introduction to the fundamental concepts that underlie all computer systems. Traditional computer organization and logic design courses cover some of this material, but they focus largely on hardware design. They provide students with little or no understanding of how important software components operate, how application programs use systems, or how system attributes affect the performance and correctness of application programs. - A more complete view of systems - Takes a broader view of systems than traditional computer organization books, covering aspects of computer design, operating systems, compilers, and networking, provides students with the understanding of how programs run on real systems. - Systems presented from a programmers perspective - Material is presented in such a way that it has clear benefit to application programmers, students learn how to use this knowledge to improve program performance and reliability. They also become more effective in program debugging, because t

The Psychology of Computer Programming


Gerald M. Weinberg - 1971
    Weinberg adds new insights and highlights the similarities and differences between now and then. Using a conversational style that invites the reader to join him, Weinberg reunites with some of his most insightful writings on the human side of software engineering.Topics include egoless programming, intelligence, psychological measurement, personality factors, motivation, training, social problems on large projects, problem-solving ability, programming language design, team formation, the programming environment, and much more.Dorset House Publishing is proud to make this important text available to new generations of programmers -- and to encourage readers of the first edition to return to its valuable lessons.

From Mathematics to Generic Programming


Alexander A. Stepanov - 2014
    If you're a reasonably proficient programmer who can think logically, you have all the background you'll need. Stepanov and Rose introduce the relevant abstract algebra and number theory with exceptional clarity. They carefully explain the problems mathematicians first needed to solve, and then show how these mathematical solutions translate to generic programming and the creation of more effective and elegant code. To demonstrate the crucial role these mathematical principles play in many modern applications, the authors show how to use these results and generalized algorithms to implement a real-world public-key cryptosystem. As you read this book, you'll master the thought processes necessary for effective programming and learn how to generalize narrowly conceived algorithms to widen their usefulness without losing efficiency. You'll also gain deep insight into the value of mathematics to programming--insight that will prove invaluable no matter what programming languages and paradigms you use. You will learn aboutHow to generalize a four thousand-year-old algorithm, demonstrating indispensable lessons about clarity and efficiencyAncient paradoxes, beautiful theorems, and the productive tension between continuous and discreteA simple algorithm for finding greatest common divisor (GCD) and modern abstractions that build on itPowerful mathematical approaches to abstractionHow abstract algebra provides the idea at the heart of generic programmingAxioms, proofs, theories, and models: using mathematical techniques to organize knowledge about your algorithms and data structuresSurprising subtleties of simple programming tasks and what you can learn from themHow practical implementations can exploit theoretical knowledge

Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today's Computers


John MacCormick - 2012
    A simple web search picks out a handful of relevant needles from the world's biggest haystack: the billions of pages on the World Wide Web. Uploading a photo to Facebook transmits millions of pieces of information over numerous error-prone network links, yet somehow a perfect copy of the photo arrives intact. Without even knowing it, we use public-key cryptography to transmit secret information like credit card numbers; and we use digital signatures to verify the identity of the websites we visit. How do our computers perform these tasks with such ease? This is the first book to answer that question in language anyone can understand, revealing the extraordinary ideas that power our PCs, laptops, and smartphones. Using vivid examples, John MacCormick explains the fundamental "tricks" behind nine types of computer algorithms, including artificial intelligence (where we learn about the "nearest neighbor trick" and "twenty questions trick"), Google's famous PageRank algorithm (which uses the "random surfer trick"), data compression, error correction, and much more. These revolutionary algorithms have changed our world: this book unlocks their secrets, and lays bare the incredible ideas that our computers use every day.

Effective C++: 55 Specific Ways to Improve Your Programs and Designs


Scott Meyers - 1991
    But the state-of-the-art has moved forward dramatically since Meyers last updated this book in 1997. (For instance, there s now STL. Design patterns. Even new functionality being added through TR1 and Boost.) So Meyers has done a top-to-bottom rewrite, identifying the 55 most valuable techniques you need now to be exceptionally effective with C++. Over half of this edition s content is new. Templates broadly impact C++ development, and you ll find them everywhere. There s extensive coverage of multithreaded systems. There s an entirely new chapter on resource management. You ll find substantial new coverage of exceptions. Much is gained, but nothing s lost: You ll find the same depth of practical insight that first made Effective C++ a classic all those years ago. Bill Camarda, from the July 2005 href="http://www.barnesandnoble.com/newslet... Only

The Elements of Computing Systems: Building a Modern Computer from First Principles


Noam Nisan - 2005
    The books also provides a companion web site that provides the toold and materials necessary to build the hardware and software.

Effective Java


Joshua Bloch - 2001
    The principal enhancement in Java 8 was the addition of functional programming constructs to Java's object-oriented roots. Java 7, 8, and 9 also introduced language features, such as the try-with-resources statement, the diamond operator for generic types, default and static methods in interfaces, the @SafeVarargs annotation, and modules. New library features include pervasive use of functional interfaces and streams, the java.time package for manipulating dates and times, and numerous minor enhancements such as convenience factory methods for collections. In this new edition of Effective Java, Bloch updates the work to take advantage of these new language and library features, and provides specific best practices for their use. Java's increased support for multiple paradigms increases the need for best-practices advice, and this book delivers. As in previous editions, each chapter consists of several "items," each presented in the form of a short, standalone essay that provides specific advice, insight into Java platform subtleties, and updated code examples. The comprehensive descriptions and explanations for each item illuminate what to do, what not to do, and why. Coverage includes:Updated techniques and best practices on classic topics, including objects, classes, methods, libraries, and generics How to avoid the traps and pitfalls of commonly misunderstood subtleties of the platform Focus on the language and its most fundamental libraries, such as java.lang and java.util

Learn Python The Hard Way


Zed A. Shaw - 2010
    The title says it is the hard way to learn to writecode but it’s actually not. It’s the “hard” way only in that it’s the way people used to teach things. In this book youwill do something incredibly simple that all programmers actually do to learn a language: 1. Go through each exercise. 2. Type in each sample exactly. 3. Make it run.That’s it. This will be very difficult at first, but stick with it. If you go through this book, and do each exercise for1-2 hours a night, then you’ll have a good foundation for moving on to another book. You might not really learn“programming” from this book, but you will learn the foundation skills you need to start learning the language.This book’s job is to teach you the three most basic essential skills that a beginning programmer needs to know:Reading And Writing, Attention To Detail, Spotting Differences.

Programming in Scala


Martin Odersky - 2008
     Coauthored by the designer of the Scala language, this authoritative book will teach you, one step at a time, the Scala language and the ideas behind it. The book is carefully crafted to help you learn. The first few chapters will give you enough of the basics that you can already start using Scala for simple tasks. The entire book is organized so that each new concept builds on concepts that came before - a series of steps that promises to help you master the Scala language and the important ideas about programming that Scala embodies. A comprehensive tutorial and reference for Scala, this book covers the entire language and important libraries.

Learn You a Haskell for Great Good!


Miran Lipovača - 2011
    Learn You a Haskell for Great Good! introduces programmers familiar with imperative languages (such as C++, Java, or Python) to the unique aspects of functional programming. Packed with jokes, pop culture references, and the author's own hilarious artwork, Learn You a Haskell for Great Good! eases the learning curve of this complex language, and is a perfect starting point for any programmer looking to expand his or her horizons. The well-known web tutorial on which this book is based is widely regarded as the best way for beginners to learn Haskell, and receives over 30,000 unique visitors monthly.

Mastering Algorithms with C


Kyle Loudon - 1999
    Mastering Algorithms with C offers you a unique combination of theoretical background and working code. With robust solutions for everyday programming tasks, this book avoids the abstract style of most classic data structures and algorithms texts, but still provides all of the information you need to understand the purpose and use of common programming techniques.Implementations, as well as interesting, real-world examples of each data structure and algorithm, are included.Using both a programming style and a writing style that are exceptionally clean, Kyle Loudon shows you how to use such essential data structures as lists, stacks, queues, sets, trees, heaps, priority queues, and graphs. He explains how to use algorithms for sorting, searching, numerical analysis, data compression, data encryption, common graph problems, and computational geometry. And he describes the relative efficiency of all implementations. The compression and encryption chapters not only give you working code for reasonably efficient solutions, they offer explanations of concepts in an approachable manner for people who never have had the time or expertise to study them in depth.Anyone with a basic understanding of the C language can use this book. In order to provide maintainable and extendible code, an extra level of abstraction (such as pointers to functions) is used in examples where appropriate. Understanding that these techniques may be unfamiliar to some programmers, Loudon explains them clearly in the introductory chapters.Contents include:PointersRecursionAnalysis of algorithmsData structures (lists, stacks, queues, sets, hash tables, trees, heaps, priority queues, graphs)Sorting and searchingNumerical methodsData compressionData encryptionGraph algorithmsGeometric algorithms