Book picks similar to
Introduction to Stochastic Processes with R by Robert P. Dobrow
mathematics
nonfiction
math
probability-and-statistics
The Joy of x: A Guided Tour of Math, from One to Infinity
Steven H. Strogatz - 2012
do it? How should you flip your mattress to get the maximum wear out of it? How does Google search the Internet? How many people should you date before settling down? Believe it or not, math plays a crucial role in answering all of these questions and more.Math underpins everything in the cosmos, including us, yet too few of us understand this universal language well enough to revel in its wisdom, its beauty — and its joy. This deeply enlightening, vastly entertaining volume translates math in a way that is at once intelligible and thrilling. Each trenchant chapter of The Joy of x offers an “aha!” moment, starting with why numbers are so helpful, and progressing through the wondrous truths implicit in π, the Pythagorean theorem, irrational numbers, fat tails, even the rigors and surprising charms of calculus. Showing why he has won awards as a professor at Cornell and garnered extensive praise for his articles about math for the New York Times, Strogatz presumes of his readers only curiosity and common sense. And he rewards them with clear, ingenious, and often funny explanations of the most vital and exciting principles of his discipline.Whether you aced integral calculus or aren’t sure what an integer is, you’ll find profound wisdom and persistent delight in The Joy of x.
A Whirlwind Tour of Python
Jake Vanderplas - 2016
This report provides a brief yet comprehensive introduction to Python for engineers, researchers, and data scientists who are already familiar with another programming language.Author Jake VanderPlas, an interdisciplinary research director at the University of Washington, explains Python’s essential syntax and semantics, built-in data types and structures, function definitions, control flow statements, and more, using Python 3 syntax.You’ll explore:- Python syntax basics and running Python codeBasic semantics of Python variables, objects, and operators- Built-in simple types and data structures- Control flow statements for executing code blocks conditionally- Methods for creating and using reusable functionsIterators, list comprehensions, and generators- String manipulation and regular expressions- Python’s standard library and third-party modules- Python’s core data science tools- Recommended resources to help you learn more
R in a Nutshell: A Desktop Quick Reference
Joseph Adler - 2009
R in a Nutshell provides a quick and practical way to learn this increasingly popular open source language and environment. You'll not only learn how to program in R, but also how to find the right user-contributed R packages for statistical modeling, visualization, and bioinformatics.The author introduces you to the R environment, including the R graphical user interface and console, and takes you through the fundamentals of the object-oriented R language. Then, through a variety of practical examples from medicine, business, and sports, you'll learn how you can use this remarkable tool to solve your own data analysis problems.Understand the basics of the language, including the nature of R objectsLearn how to write R functions and build your own packagesWork with data through visualization, statistical analysis, and other methodsExplore the wealth of packages contributed by the R communityBecome familiar with the lattice graphics package for high-level data visualizationLearn about bioinformatics packages provided by Bioconductor"I am excited about this book. R in a Nutshell is a great introduction to R, as well as a comprehensive reference for using R in data analytics and visualization. Adler provides 'real world' examples, practical advice, and scripts, making it accessible to anyone working with data, not just professional statisticians."
Statistics for Business & Economics
James T. McClave - 1991
Theoretical, yet applied. Statistics for Business and Economics, Eleventh Edition, gives you the best of both worlds. Using a rich array of applications from a variety of industries, McClave/Sincich/Benson clearly demonstrates how to use statistics effectively in a business environment.The book focuses on developing statistical thinking so the reader can better assess the credibility and value of inferences made from data. As consumers and future producers of statistical inferences, readers are introduced to a wide variety of data collection and analysis techniques to help them evaluate data and make informed business decisions. As with previous editions, this revision offers an abundance of applications with many new and updated exercises that draw on real business situations and recent economic events. The authors assume a background of basic algebra.
Schaum's Outline of Advanced Mathematics for Engineers and Scientists
Murray R. Spiegel - 1971
Fully stocked with solved problemsN950 of themNit shows you how to solve problems that may not have been fully explained in class. Plus you ge"
Introduction to Graph Theory
Douglas B. West - 1995
Verification that algorithms work is emphasized more than their complexity. An effective use of examples, and huge number of interesting exercises, demonstrate the topics of trees and distance, matchings and factors, connectivity and paths, graph coloring, edges and cycles, and planar graphs. For those who need to learn to make coherent arguments in the fields of mathematics and computer science.
R for Dummies
Joris Meys - 2012
R is packed with powerful programming capabilities, but learning to use R in the real world can be overwhelming for even the most seasoned statisticians. This easy-to-follow guide explains how to use R for data processing and statistical analysis, and then, shows you how to present your data using compelling and informative graphics. You'll gain practical experience using R in a variety of settings and delve deeper into R's feature-rich toolset.Includes tips for the initial installation of RDemonstrates how to easily perform calculations on vectors, arrays, and lists of dataShows how to effectively visualize data using R's powerful graphics packagesGives pointers on how to find, install, and use add-on packages created by the R communityProvides tips on getting additional help from R mailing lists and websitesWhether you're just starting out with statistical analysis or are a procedural programming pro, "R For Dummies" is the book you need to get the most out of R.
The Model Thinker: What You Need to Know to Make Data Work for You
Scott E. Page - 2018
But as anyone who has ever opened up a spreadsheet packed with seemingly infinite lines of data knows, numbers aren't enough: we need to know how to make those numbers talk. In The Model Thinker, social scientist Scott E. Page shows us the mathematical, statistical, and computational models—from linear regression to random walks and far beyond—that can turn anyone into a genius. At the core of the book is Page's "many-model paradigm," which shows the reader how to apply multiple models to organize the data, leading to wiser choices, more accurate predictions, and more robust designs. The Model Thinker provides a toolkit for business people, students, scientists, pollsters, and bloggers to make them better, clearer thinkers, able to leverage data and information to their advantage.
Zombie Economics: A Guide to Personal Finance
Lisa Desjardins - 2011
It's compelling, it's straightforward, and it can change your life. Zombie Economics is for anyone in the midst of financial uncertainty, a place where carelessness and timidity will cost you. From the creeping spread of unpaid bills to the lumbering advance of creditors, Zombie Economics confronts the biggest threats to your personal economy, takes aim, and then takes them down. Specific chapters include: A Basement Full of Ammo Saving yourself by saving money They'll Eat the Fat Ones First Using fitness as a financial asset Shooting Dad in the Head Ending your relationships with the financially infected With simple, easy-to-use techniques for identifying-and eliminating-your financial weak spots, Zombie Economics turns victims into survivors. Watch a Video"
Python Machine Learning
Sebastian Raschka - 2015
We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world
Statistics for Dummies
Deborah J. Rumsey - 2003
. ." and "The data bear this out. . . ." But the field of statistics is not just about data. Statistics is the entire process involved in gathering evidence to answer questions about the world, in cases where that evidence happens to be numerical data. Statistics For Dummies is for everyone who wants to sort through and evaluate the incredible amount of statistical information that comes to them on a daily basis. (You know the stuff: charts, graphs, tables, as well as headlines that talk about the results of the latest poll, survey, experiment, or other scientific study.) This book arms you with the ability to decipher and make important decisions about statistical results, being ever aware of the ways in which people can mislead you with statistics. Get the inside scoop on number-crunching nuances, plus insight into how you canDetermine the odds Calculate a standard score Find the margin of error Recognize the impact of polls Establish criteria for a good survey Make informed decisions about experiments This down-to-earth reference is chock-full of real examples from real sources that are relevant to your everyday life: from the latest medical breakthroughs, crime studies, and population trends to surveys on Internet dating, cell phone use, and the worst cars of the millennium. Statistics For Dummies departs from traditional statistics texts, references, supplement books, and study guides in the following ways:Practical and intuitive explanations of statistical concepts, ideas, techniques, formulas, and calculations. Clear and concise step-by-step procedures that intuitively explain how to work through statistics problems. Upfront and honest answers to your questions like, "What does this really mean?" and "When and how I will ever use this?" Chances are, Statistics For Dummies will be your No. 1 resource for discovering how numerical data figures into your corner of the universe.
Problems in Mathematics with Hints and Solutions
V. Govorov - 1996
Theory has been provided in points between each chapter for clarifying relevant basic concepts. The book consist four parts algebra and trigonometry, fundamentals of analysis, geometry and vector algebra and the problems and questions set during oral examinations. Each chapter consist topic wise problems. Sample examples are provided after each text for understanding the topic well. The fourth part "oral examination problems and question" includes samples suggested by the higher schools for the help of students. Answers and hints are given at the end of the book for understanding the concept well. About the Book: Problems in Mathematics with Hints and Solutions Contents: Preface Part 1. Algebra, Trigonometry and Elementary Functions Problems on Integers. Criteria for Divisibility Real Number, Transformation of Algebraic Expressions Mathematical Induction. Elements of Combinatorics. BinomialTheorem Equations and Inequalities of the First and the SecondDegree Equations of Higher Degrees, Rational Inequalities Irrational Equations and Inequalities Systems of Equations and Inequalities The Domain of Definition and the Range of a Function Exponential and Logarithmic Equations and Inequalities Transformations of Trigonometric Expressions. InverseTrigonometric Functions Solutions of Trigonometric Equations, Inequalities and Systemsof Equations Progressions Solutions of Problems on Derivation of Equations Complex Numbers Part 2. Fundamentals of Mathematical Analysis Sequences and Their Limits. An Infinitely Decreasing GeometricProgression. Limits of Functions The Derivative. Investigating the Behaviors of Functions withthe Aid of the Derivative Graphs of Functions The Antiderivative. The Integral. The Area of a CurvilinearTrapezoid Part 3. Geometry and Vector Algebra Vector Algebra Plane Geometry. Problems on Proof Plane Geometry. Construction Problems Plane Geometry. C
Programming Collective Intelligence: Building Smart Web 2.0 Applications
Toby Segaran - 2002
With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect
Data Science For Dummies
Lillian Pierson - 2014
Data Science For Dummies is the perfect starting point for IT professionals and students interested in making sense of their organization’s massive data sets and applying their findings to real-world business scenarios. From uncovering rich data sources to managing large amounts of data within hardware and software limitations, ensuring consistency in reporting, merging various data sources, and beyond, you’ll develop the know-how you need to effectively interpret data and tell a story that can be understood by anyone in your organization. Provides a background in data science fundamentals before moving on to working with relational databases and unstructured data and preparing your data for analysis Details different data visualization techniques that can be used to showcase and summarize your data Explains both supervised and unsupervised machine learning, including regression, model validation, and clustering techniques Includes coverage of big data processing tools like MapReduce, Hadoop, Dremel, Storm, and Spark It’s a big, big data world out there – let Data Science For Dummies help you harness its power and gain a competitive edge for your organization.
Good-Bye Round Robin: 25 Effective Oral Reading Strategies
Michael F. Opitz - 1998
This title shows you how to get up and running fast with complete coverage of this useful scripting tool. The author covers ActionScript from a designer's viewpoint, showing you how to make the most of it without having to be a programmer.