Algebraic Topology


Allen Hatcher - 2001
    This introductory text is suitable for use in a course on the subject or for self-study, featuring broad coverage and a readable exposition, with many examples and exercises. The four main chapters present the basics: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature is the inclusion of many optional topics not usually part of a first course due to time constraints: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and Steenrod squares and powers.

Programming Clojure


Stuart Halloway - 2009
    Clojure's clean, careful design lets you write programs that get right to the essence of a problem, without a lot of clutter and ceremony. Clojure is Lisp reloaded. Clojure has the power inherent in Lisp, but is not constrained by the history of Lisp. Clojure is a functional language. Data structures are immutable, and functions tend to be side-effect free. This makes it easier to write correct programs, and to compose large programs from smaller ones. Clojure is concurrent. Rather than error-prone locking, Clojure provides software transactional memory. Clojure embraces Java. Calling from Clojure to Java is direct, and goes through no translation layer. Clojure is fast. Wherever you need it, you can get the exact same performance that you could get from hand-written Java code. Many other languages offer some of these features, but the combination of them all makes Clojure sparkle. Programming Clojure shows you why these features are so important, and how you can use Clojure to build powerful programs quickly.

Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference


Cameron Davidson-Pilon - 2014
    However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice-freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You'll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you've mastered these techniques, you'll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes - Learning the Bayesian "state of mind" and its practical implications - Understanding how computers perform Bayesian inference - Using the PyMC Python library to program Bayesian analyses - Building and debugging models with PyMC - Testing your model's "goodness of fit" - Opening the "black box" of the Markov Chain Monte Carlo algorithm to see how and why it works - Leveraging the power of the "Law of Large Numbers" - Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning - Using loss functions to measure an estimate's weaknesses based on your goals and desired outcomes - Selecting appropriate priors and understanding how their influence changes with dataset size - Overcoming the "exploration versus exploitation" dilemma: deciding when "pretty good" is good enough - Using Bayesian inference to improve A/B testing - Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.

PostgreSQL 9.0 High Performance


Gregory Smith - 2010
    You could spend years discovering solutions to them all, step by step as you encounter them. Or you can just look in here. All successful database applications are destined to eventually run into issues scaling up their performance. Peek into the future of your PostgreSQL database's problems today. Know the warning signs to look for, and how to avoid the most common issues before they even happen. Surprisingly, most PostgreSQL database applications evolve in the same way: Choose the right hardware. Tune the operating system and server memory use. Optimize queries against the database, with the right indexes. Monitor every layer, from hardware to queries, using some tools that are inside PostgreSQL and others that are external. Using monitoring insight, continuously rework the design and configuration. On reaching the limits of a single server, break things up; connection pooling, caching, partitioning, and replication can all help handle increasing database workloads. The path to a high performance database system isn't always easy. But it doesn't have to be mysterious with the right guide. This book is a clear, step-by-step guide to optimizing and scaling up PostgreSQL database servers. - Publisher.

Functional Programming in Scala


Rúnar Bjarnason - 2013
    As a result, functional code is easier to test and reuse, simpler to parallelize, and less prone to bugs. Scala is an emerging JVM language that offers strong support for FP. Its familiar syntax and transparent interoperability with existing Java libraries make Scala a great place to start learning FP.Functional Programming in Scala is a serious tutorial for programmers looking to learn FP and apply it to the everyday business of coding. The book guides readers from basic techniques to advanced topics in a logical, concise, and clear progression. In it, they'll find concrete examples and exercises that open up the world of functional programming.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.

Practical Common LISP


Peter Seibel - 2005
    This is the first book that introduces Lisp as a language for the real world.Practical Common Lisp presents a thorough introduction to Common Lisp, providing you with an overall understanding of the language features and how they work. Over a third of the book is devoted to practical examples, such as the core of a spam filter and a web application for browsing MP3s and streaming them via the Shoutcast protocol to any standard MP3 client software (e.g., iTunes, XMMS, or WinAmp). In other "practical" chapters, author Peter Seibel demonstrates how to build a simple but flexible in-memory database, how to parse binary files, and how to build a unit test framework in 26 lines of code.

Data Smart: Using Data Science to Transform Information into Insight


John W. Foreman - 2013
    Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions.But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope.Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data.Each chapter will cover a different technique in a spreadsheet so you can follow along: - Mathematical optimization, including non-linear programming and genetic algorithms- Clustering via k-means, spherical k-means, and graph modularity- Data mining in graphs, such as outlier detection- Supervised AI through logistic regression, ensemble models, and bag-of-words models- Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation- Moving from spreadsheets into the R programming languageYou get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.

Discrete Mathematics and Its Applications


Kenneth H. Rosen - 2000
    These themes include mathematical reasoning, combinatorial analysis, discrete structures, algorithmic thinking, and enhanced problem-solving skills through modeling. Its intent is to demonstrate the relevance and practicality of discrete mathematics to all students. The Fifth Edition includes a more thorough and linear presentation of logic, proof types and proof writing, and mathematical reasoning. This enhanced coverage will provide students with a solid understanding of the material as it relates to their immediate field of study and other relevant subjects. The inclusion of applications and examples to key topics has been significantly addressed to add clarity to every subject. True to the Fourth Edition, the text-specific web site supplements the subject matter in meaningful ways, offering additional material for students and instructors. Discrete math is an active subject with new discoveries made every year. The continual growth and updates to the web site reflect the active nature of the topics being discussed. The book is appropriate for a one- or two-term introductory discrete mathematics course to be taken by students in a wide variety of majors, including computer science, mathematics, and engineering. College Algebra is the only explicit prerequisite.

Learn to Program with Scratch: A Visual Introduction to Programming with Art, Science, Math and Games


Majed Marji - 2014
    Its playful, intuitive interface uses colorful programming blocks and cartoon sprites to make real programming more approachable. Learn to Program with Scratchshows just how much you can do with Scratch and teaches you essential, universal programming concepts along the way.In Learn to Program with Scratch, author Majed Marji takes you on a tour through Scratch's surprisingly powerful features to teach programming concepts like procedures, variables, loops, recursion, decision making, and lists. You will use your new-found skills to create science simulations, math projects, and even some fun arcade games! Each chapter offers a summary and practice exercises at the end to make sure the lessons stick.Scratch is an incredibly fun and easy language to learn, plus you can do some seriously potent programming with it. Learn to Program with Scratch will help you get the most out of Scratch and begin your journey into the world of programming.

Objects on Rails


Avdi Grimm - 2012
    This book is aimed at the working Rails developer who is looking to grow and evolve Rails projects while keeping them flexible, maintainable, and robust. The focus is on pragmatic solutions which tread a “middle way” between the expedience of the Rails “golden path”, and rigid OO purity.

Information Theory: A Tutorial Introduction


James V. Stone - 2015
    In this richly illustrated book, accessible examples are used to show how information theory can be understood in terms of everyday games like '20 Questions', and the simple MatLab programs provided give hands-on experience of information theory in action. Written in a tutorial style, with a comprehensive glossary, this text represents an ideal primer for novices who wish to become familiar with the basic principles of information theory.Download chapter 1 from http://jim-stone.staff.shef.ac.uk/Boo...

Programming Rust: Fast, Safe Systems Development


Jim Blandy - 2015
    Rust's modern, flexible types ensure your program is free of null pointer dereferences, double frees, dangling pointers, and similar bugs, all at compile time, without runtime overhead. In multi-threaded code, Rust catches data races at compile time, making concurrency much easier to use.Written by two experienced systems programmers, this book explains how Rust manages to bridge the gap between performance and safety, and how you can take advantage of it. Topics include:How Rust represents values in memory (with diagrams)Complete explanations of ownership, moves, borrows, and lifetimesCargo, rustdoc, unit tests, and how to publish your code on crates.io, Rust's public package repositoryHigh-level features like generic code, closures, collections, and iterators that make Rust productive and flexibleConcurrency in Rust: threads, mutexes, channels, and atomics, all much safer to use than in C or C++Unsafe code, and how to preserve the integrity of ordinary code that uses itExtended examples illustrating how pieces of the language fit together

Data Science from Scratch: First Principles with Python


Joel Grus - 2015
    In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Learn R in a Day


Steven Murray - 2013
    The book assumes no prior knowledge of computer programming and progressively covers all the essential steps needed to become confident and proficient in using R within a day. Topics include how to input, manipulate, format, iterate (loop), query, perform basic statistics on, and plot data, via a step-by-step technique and demonstrations using in-built datasets which the reader is encouraged to replicate on their computer. Each chapter also includes exercises (with solutions) to practice key skills and empower the reader to build on the essentials gained during this introductory course.

CompTIA Project+ Study Guide Authorized Courseware: Exam PK0–003


Kim Heldman - 2010
    You'll find complete coverage of all exam objectives, including key topics such as project planning, execution, delivery, closure, and others. CompTIA's Project+ is the foundation-level professional exam in the complex world of project management; certified project managers often choose to go on and obtain their Project Management Professional (PMP) certifications as well Provides complete coverage of all exam objectives for CompTIA's first update to the Project+ exam in six years Covers project planning, execution, delivery, change, control, communication, and closure Demonstrates and reinforces exam preparation with practical examples and real-word scenarios Includes a CD with Sybex test engine, practice exams, electronic flashcards, and a PDF of the book Approach the new Project+ exam with confidence with this in-depth study guide! Reviews