Book picks similar to
Real Analysis by Norman B. Haaser


mathematics
math
real-analysis
study-bookshelf

Abstract Algebra


David S. Dummit - 1900
    This book is designed to give the reader insight into the power and beauty that accrues from a rich interplay between different areas of mathematics. The book carefully develops the theory of different algebraic structures, beginning from basic definitions to some in-depth results, using numerous examples and exercises to aid the reader's understanding. In this way, readers gain an appreciation for how mathematical structures and their interplay lead to powerful results and insights in a number of different settings. * The emphasis throughout has been to motivate the introduction and development of important algebraic concepts using as many examples as possible.

How to Solve It: A New Aspect of Mathematical Method


George Pólya - 1944
    Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be reasoned out--from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft--indeed, brilliant--instructions on stripping away irrelevancies and going straight to the heart of the problem.

The Art of Problem Solving Vol. 2: And Beyond


Sandor Leholzky - 2003
    The Art of Problem Solving, Volume 2, is the classic problem solving textbook used by many successful high school math teams and enrichment programs and have been an important building block for students who, like the authors, performed well enough on the American Mathematics Contest series to qualify for the Math Olympiad Summer Program which trains students for the United States International Math Olympiad team.Volume 2 is appropriate for students who have mastered the problem solving fundamentals presented in Volume 1 and are ready for a greater challenge. Although the Art of Problem Solving is widely used by students preparing for mathematics competitions, the book is not just a collection of tricks. The emphasis on learning and understanding methods rather than memorizing formulas enables students to solve large classes of problems beyond those presented in the book.Speaking of problems, the Art of Problem Solving, Volume 2, contains over 500 examples and exercises culled from such contests as the Mandelbrot Competition, the AMC tests, and ARML. Full solutions (not just answers!) are available for all the problems in the solution manual.

Mathematical Mysteries: The Beauty and Magic of Numbers


Calvin C. Clawson - 1996
    This recreational math book takes the reader on a fantastic voyage into the world of natural numbers. From the earliest discoveries of the ancient Greeks to various fundamental characteristics of the natural number sequence, Clawson explains fascinating mathematical mysteries in clear and easy prose. He delves into the heart of number theory to see and understand the exquisite relationships among natural numbers, and ends by exploring the ultimate mystery of mathematics: the Riemann hypothesis, which says that through a point in a plane, no line can be drawn parallel to a given line.While a professional mathematician's treatment of number theory involves the most sophisticated analytical tools, its basic ideas are surprisingly easy to comprehend. By concentrating on the meaning behind various equations and proofs and avoiding technical refinements, Mathematical Mysteries lets the common reader catch a glimpse of this wonderful and exotic world.

Math and the Mona Lisa: The Art and Science of Leonardo Da Vinci


Bülent Atalay - 2004
    Readers of The Da Vinci Code were given a glimpse of the mysterious connections between math, science, and Leonardo's art. Math and the Mona Lisa picks up where The Da Vinci Code left off, illuminating Leonardo's life and work to uncover connections that, until now, have been known only to scholars.Following Leonardo's own unique model, Atalay searches for the internal dynamics of art and science, revealing to us the deep unity of the two cultures. He provides a broad overview of the development of science from the dawn of civilization to today's quantum mechanics. From this base of information, Atalay offers a fascinating view into Leonardo's restless intellect and modus operandi, allowing us to see the source of his ideas and to appreciate his art from a new perspective. William D. Phillips, who won the Nobel Prize in physics in 1997, writes of the author, "Atalay is indeed a modern renaissance man, and he invites us to tap the power of synthesis that is Leonardo's model."

Visual Complex Analysis


Tristan Needham - 1997
    Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack ofadvanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicatedwith the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.

The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth


Paul Hoffman - 1998
    Based on a National Magazine Award-winning article, this masterful biography of Hungarian-born Paul Erdos is both a vivid portrait of an eccentric genius and a layman's guide to some of this century's most startling mathematical discoveries.

Mathematics: Its Content, Methods and Meaning


A.D. Aleksandrov - 1963
    . . Nothing less than a major contribution to the scientific culture of this world." — The New York Times Book ReviewThis major survey of mathematics, featuring the work of 18 outstanding Russian mathematicians and including material on both elementary and advanced levels, encompasses 20 prime subject areas in mathematics in terms of their simple origins and their subsequent sophisticated developement. As Professor Morris Kline of New York University noted, "This unique work presents the amazing panorama of mathematics proper. It is the best answer in print to what mathematics contains both on the elementary and advanced levels."Beginning with an overview and analysis of mathematics, the first of three major divisions of the book progresses to an exploration of analytic geometry, algebra, and ordinary differential equations. The second part introduces partial differential equations, along with theories of curves and surfaces, the calculus of variations, and functions of a complex variable. It furthur examines prime numbers, the theory of probability, approximations, and the role of computers in mathematics. The theory of functions of a real variable opens the final section, followed by discussions of linear algebra and nonEuclidian geometry, topology, functional analysis, and groups and other algebraic systems.Thorough, coherent explanations of each topic are further augumented by numerous illustrative figures, and every chapter concludes with a suggested reading list. Formerly issued as a three-volume set, this mathematical masterpiece is now available in a convenient and modestly priced one-volume edition, perfect for study or reference."This is a masterful English translation of a stupendous and formidable mathematical masterpiece . . ." — Social Science

Operations Research: Applications and Algorithms (with CD-ROM and InfoTrac)


Wayne L. Winston - 1987
    It moves beyond a mere study of algorithms without sacrificing the rigor that faculty desire. As in every edition, Winston reinforces the book's successful features and coverage with the most recent developments in the field. The Student Suite CD-ROM, which now accompanies every new copy of the text, contains the latest versions of commercial software for optimization, simulation, and decision analysis.

The Calculus Diaries: How Math Can Help You Lose Weight, Win in Vegas, and Survive a Zombie Apocalypse


Jennifer Ouellette - 2010
    But then the English-major-turned-award-winning-science-writer had a change of heart and decided to revisit the equations and formulas that had haunted her for years. The Calculus Diaries is the fun and fascinating account of her year spent confronting her math phobia head on. With wit and verve, Ouellette shows how she learned to apply calculus to everything from gas mileage to dieting, from the rides at Disneyland to shooting craps in Vegas-proving that even the mathematically challenged can learn the fundamentals of the universal language.

Schaum's Outline of Differential Equations


Richard Bronson - 2006
    Thoroughly updated, this edition offers new, faster techniques for solving differential equations generated by the emergence of high-speed computers.

The World of Mathematics: A Four-Volume Set


James Roy Newman - 1956
    It comprises non-technical essays on every aspect of the vast subject, including articles by scores of eminent mathematicians and other thinkers.

Math for Grownups


Laura Laing - 2011
    You multiply something by something, right? Or you're scratching your head, wondering how to compute the odds that your football team will take next Sunday's game. You're pretty sure that involved ratios. The problem is, you can't quite remember.Here you get an adult refresher and real-life context—with examples ranging from how to figure out how many shingles it takes to re-roof the garage to the formula for resizing Mom's tomato sauce recipe for your entire family.Forget higher calculus—you just need an open mind. And with this practical guide, math can stop being scary and start being useful.

Discrete Mathematics


Richard Johnsonbaugh - 1984
    Focused on helping students understand and construct proofs and expanding their mathematical maturity, this best-selling text is an accessible introduction to discrete mathematics. Johnsonbaugh's algorithmic approach emphasizes problem-solving techniques. The Seventh Edition reflects user and reviewer feedback on both content and organization.

Naive Set Theory


Paul R. Halmos - 1960
    This book contains my answer to that question. The purpose of the book is to tell the beginning student of advanced mathematics the basic set- theoretic facts of life, and to do so with the minimum of philosophical discourse and logical formalism. The point of view throughout is that of a prospective mathematician anxious to study groups, or integrals, or manifolds. From this point of view the concepts and methods of this book are merely some of the standard mathematical tools; the expert specialist will find nothing new here. Scholarly bibliographical credits and references are out of place in a purely expository book such as this one. The student who gets interested in set theory for its own sake should know, however, that there is much more to the subject than there is in this book. One of the most beautiful sources of set-theoretic wisdom is still Hausdorff's Set theory. A recent and highly readable addition to the literature, with an extensive and up-to-date bibliography, is Axiomatic set theory by Suppes.