Book picks similar to
How Maps Work: Representation, Visualization, and Design by Alan M. MacEachren
maps
visualization
cartography
data-visualization
The Practice of Programming (Addison-Wesley Professional Computing Series)
Brian W. Kernighan - 1999
With the same insight and authority that made their book The Unix programming Environment a classic, Brian Kernighan and Rob Pike have written The Practice of Programming to help make individual programmers more effective and productive.
Good Charts: The HBR Guide to Making Smarter, More Persuasive Data Visualizations
Scott Berinato - 2016
No longer. A new generation of tools and massive amounts of available data make it easy for anyone to create visualizations that communicate ideas far more effectively than generic spreadsheet charts ever could.What’s more, building good charts is quickly becoming a need-to-have skill for managers. If you’re not doing it, other managers are, and they’re getting noticed for it and getting credit for contributing to your company’s success.In Good Charts, dataviz maven Scott Berinato provides an essential guide to how visualization works and how to use this new language to impress and persuade. Dataviz today is where spreadsheets and word processors were in the early 1980s—on the cusp of changing how we work. Berinato lays out a system for thinking visually and building better charts through a process of talking, sketching, and prototyping.This book is much more than a set of static rules for making visualizations. It taps into both well-established and cutting-edge research in visual perception and neuroscience, as well as the emerging field of visualization science, to explore why good charts (and bad ones) create “feelings behind our eyes.” Along the way, Berinato also includes many engaging vignettes of dataviz pros, illustrating the ideas in practice.Good Charts will help you turn plain, uninspiring charts that merely present information into smart, effective visualizations that powerfully convey ideas.
Introduction to Algorithms
Thomas H. Cormen - 1989
Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.
Data Science for Business: What you need to know about data mining and data-analytic thinking
Foster Provost - 2013
This guide also helps you understand the many data-mining techniques in use today.Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidates
HTML5 for Web Designers
Jeremy Keith - 2010
It is also the most powerful, and in some ways, the most confusing. What do accessible, content-focused standards-based web designers and front-end developers need to know? And how can we harness the power of HTML5 in today’s browsers?In this brilliant and entertaining user’s guide, Jeremy Keith cuts to the chase, with crisp, clear, practical examples, and his patented twinkle and charm.
London: The Information Capital
James Cheshire - 2014
By combining millions of data points with stunning design, they investigate how flights stack over Heathrow, who lives longest, and where Londoners love to tweet. The result? One hundred portraits of an old city in a very new way.
How to Make Sense of Any Mess: Information Architecture for Everybody
Abby Covert - 2014
It is easy to be overwhelmed by the amount of information we encounter each day. Whether at work, at school, or in our personal endeavors, there’s a deepening (and inescapable) need for people to work with and understand information. Information architecture is the way that we arrange the parts of something to make it understandable as a whole. When we make things for others to use, the architecture of information that we choose greatly affects our ability to deliver our intended message to our users. We all face messes made of information and people. I define the word “mess” the same way that most dictionaries do: “A situation where the interactions between people and information are confusing or full of difficulties.” — Who doesn’t bump up against messes made of information and people every day? This book provides a seven step process for making sense of any mess. Each chapter contains a set of lessons as well as workbook exercises architected to help you to work through your own mess.
Python for Data Analysis
Wes McKinney - 2011
It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you'll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language.Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies. It's ideal for analysts new to Python and for Python programmers new to scientific computing.Use the IPython interactive shell as your primary development environmentLearn basic and advanced NumPy (Numerical Python) featuresGet started with data analysis tools in the pandas libraryUse high-performance tools to load, clean, transform, merge, and reshape dataCreate scatter plots and static or interactive visualizations with matplotlibApply the pandas groupby facility to slice, dice, and summarize datasetsMeasure data by points in time, whether it's specific instances, fixed periods, or intervalsLearn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples
Infographics
Jason Lankow - 2012
Visual content--such as infographics and data visualization--can accomplish this. With DIY functionality, Infographics: The Power of Visual Storytelling will teach you how to find stories in your data, and how to visually communicate and share them with your audience for maximum impact.Infographics will show you the vast potential to using the communication medium as a marketing tool by creating informative and shareable infographic content.Learn how to explain an object, idea, or process using strong illustration that captures interest and provides instant clarity Discover how to unlock interesting stories (in previously buried or boring data) and turn them into visual communications that will help build brands and increase sales Use the power of visual content to communicate with and engage your audience, capture attention, and expand your market.
Python Data Science Handbook: Tools and Techniques for Developers
Jake Vanderplas - 2016
Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you’ll learn how to use: * IPython and Jupyter: provide computational environments for data scientists using Python * NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python * Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python * Matplotlib: includes capabilities for a flexible range of data visualizations in Python * Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Artificial Intelligence: A Modern Approach
Stuart Russell - 1994
The long-anticipated revision of this best-selling text offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. *NEW-Nontechnical learning material-Accompanies each part of the book. *NEW-The Internet as a sample application for intelligent systems-Added in several places including logical agents, planning, and natural language. *NEW-Increased coverage of material - Includes expanded coverage of: default reasoning and truth maintenance systems, including multi-agent/distributed AI and game theory; probabilistic approaches to learning including EM; more detailed descriptions of probabilistic inference algorithms. *NEW-Updated and expanded exercises-75% of the exercises are revised, with 100 new exercises. *NEW-On-line Java software. *Makes it easy for students to do projects on the web using intelligent agents. *A unified, agent-based approach to AI-Organizes the material around the task of building intelligent agents. *Comprehensive, up-to-date coverage-Includes a unified view of the field organized around the rational decision making pa
The Information Design Handbook
Jenn Visocky O'Grady - 2008
The Information Design Handbook celebrates graphics that are exemplars of communication and esthetics, and reveals the thought processes and design skills behind them. This comprehensive guide to creating information graphics is packed with essential design principles, case studies, color palettes, trouble-shooting tips, and much more. Designers will learn to achieve graphics that are visually striking yet concise and supremely funcitional with this must-have resource.
Successful Business Intelligence: Secrets to Making BI a Killer App
Cindi Howson - 2007
Learn about the components of a BI architecture, how to choose the appropriate tools and technologies, and how to roll out a BI strategy throughout the organisation.
The Elements of User Experience: User-Centered Design for the Web
Jesse James Garrett - 2002
This book aims to minimize the complexity of user-centered design for the Web with explanations and illustrations that focus on ideas rather than tools or techniques.
Processing: A Programming Handbook for Visual Designers and Artists
Casey Reas - 2007
This book is an introduction to the concepts of computer programming within the context of the visual arts. It offers a comprehensive reference and text for Processing (www.processing.org), an open-source programming language that can be used by students, artists, designers, architects, researchers, and anyone who wants to program images, animation, and interactivity. The ideas in Processing have been tested in classrooms, workshops, and arts institutions, including UCLA, Carnegie Mellon, New York University, and Harvard University. Tutorial units make up the bulk of the book and introduce the syntax and concepts of software (including variables, functions, and object-oriented programming), cover such topics as photography and drawing in relation to software, and feature many short, prototypical example programs with related images and explanations. More advanced professional projects from such domains as animation, performance, and typography are discussed in interviews with their creators. "Extensions" present concise introductions to further areas of investigation, including computer vision, sound, and electronics. Appendixes, references to additional material, and a glossary contain additional technical details. Processing can be used by reading each unit in order, or by following each category from the beginning of the book to the end. The Processing software and all of the code presented can be downloaded and run for future exploration.Includes essays by Alexander R. Galloway, Golan Levin, R. Luke DuBois, Simon Greenwold, Francis Li, and Hernando Barragan and interviews with Jared Tarbell, Martin Wattenberg, James Paterson, Erik van Blockland, Ed Burton, Josh On, Jurg Lehni, Auriea Harvey and Michael Samyn, Mathew Cullen and Grady Hall, Bob Sabiston, Jennifer Steinkamp, Ruth Jarman and Joseph Gerhardt, Sue Costabile, Chris Csikszentmihalyi, Golan Levin and Zachary Lieberman, and Mark Hansen.Casey Reas is Associate Professor in the Design Media Arts Department at the University of California, Los Angeles. Ben Fry is Nierenburg Chair of Design in the School of Design at Carnegie Mellon University, 2006-2007."