Book picks similar to
Solving Mathematical Problems: A Personal Perspective by Terence Tao
mathematics
math
maths
science
The Calculus Direct
John Weiss - 2009
The calculus is not a hard subject and I prove this through an easy to read and obvious approach spanning only 100 pages. I have written this book with the following type of student in mind; the non-traditional student returning to college after a long break, a notoriously weak student in math who just needs to get past calculus to obtain a degree, and the garage tinkerer who wishes to understand a little more about the technical subjects. This book is meant to address the many fundamental thought-blocks that keep the average 'mathaphobe' (or just an interested person who doesn't have the time to enroll in a course) from excelling in mathematics in a clear and concise manner. It is my sincerest hope that this book helps you with your needs.Show more Show less
Computational Complexity
Christos H. Papadimitriou - 1993
It offers a comprehensive and accessible treatment of the theory of algorithms and complexity—the elegant body of concepts and methods developed by computer scientists over the past 30 years for studying the performance and limitations of computer algorithms. The book is self-contained in that it develops all necessary mathematical prerequisites from such diverse fields such as computability, logic, number theory and probability.
Four Colors Suffice: How the Map Problem Was Solved
Robin J. Wilson - 2002
This is the amazing story of how the "map problem" was solved.The problem posed in the letter came from a former student: What is the least possible number of colors needed to fill in any map (real or invented) so that neighboring counties are always colored differently? This deceptively simple question was of minimal interest to cartographers, who saw little need to limit how many colors they used. But the problem set off a frenzy among professional mathematicians and amateur problem solvers, among them Lewis Carroll, an astronomer, a botanist, an obsessive golfer, the Bishop of London, a man who set his watch only once a year, a California traffic cop, and a bridegroom who spent his honeymoon coloring maps. In their pursuit of the solution, mathematicians painted maps on doughnuts and horseshoes and played with patterned soccer balls and the great rhombicuboctahedron. It would be more than one hundred years (and countless colored maps) later before the result was finally established. Even then, difficult questions remained, and the intricate solution--which involved no fewer than 1,200 hours of computer time--was greeted with as much dismay as enthusiasm.Providing a clear and elegant explanation of the problem and the proof, Robin Wilson tells how a seemingly innocuous question baffled great minds and stimulated exciting mathematics with far-flung applications. This is the entertaining story of those who failed to prove, and those who ultimately did prove, that four colors do indeed suffice to color any map.
Introduction to Probability
Dimitri P. Bertsekas - 2002
This is the currently used textbook for "Probabilistic Systems Analysis," an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains, a number of more advanced topics, from which an instructor can choose to match the goals of a particular course. These topics include transforms, sums of random variables, least squares estimation, the bivariate normal distribution, and a fairly detailed introduction to Bernoulli, Poisson, and Markov processes. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis has been just intuitively explained in the text, but is developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems. The book has been widely adopted for classroom use in introductory probability courses within the USA and abroad.
Statistical Inference
George Casella - 2001
Starting from the basics of probability, the authors develop the theory of statistical inference using techniques, definitions, and concepts that are statistical and are natural extensions and consequences of previous concepts. This book can be used for readers who have a solid mathematics background. It can also be used in a way that stresses the more practical uses of statistical theory, being more concerned with understanding basic statistical concepts and deriving reasonable statistical procedures for a variety of situations, and less concerned with formal optimality investigations.
The Signal and the Noise: Why So Many Predictions Fail—But Some Don't
Nate Silver - 2012
He solidified his standing as the nation's foremost political forecaster with his near perfect prediction of the 2012 election. Silver is the founder and editor in chief of FiveThirtyEight.com. Drawing on his own groundbreaking work, Silver examines the world of prediction, investigating how we can distinguish a true signal from a universe of noisy data. Most predictions fail, often at great cost to society, because most of us have a poor understanding of probability and uncertainty. Both experts and laypeople mistake more confident predictions for more accurate ones. But overconfidence is often the reason for failure. If our appreciation of uncertainty improves, our predictions can get better too. This is the "prediction paradox": The more humility we have about our ability to make predictions, the more successful we can be in planning for the future.In keeping with his own aim to seek truth from data, Silver visits the most successful forecasters in a range of areas, from hurricanes to baseball, from the poker table to the stock market, from Capitol Hill to the NBA. He explains and evaluates how these forecasters think and what bonds they share. What lies behind their success? Are they good-or just lucky? What patterns have they unraveled? And are their forecasts really right? He explores unanticipated commonalities and exposes unexpected juxtapositions. And sometimes, it is not so much how good a prediction is in an absolute sense that matters but how good it is relative to the competition. In other cases, prediction is still a very rudimentary-and dangerous-science.Silver observes that the most accurate forecasters tend to have a superior command of probability, and they tend to be both humble and hardworking. They distinguish the predictable from the unpredictable, and they notice a thousand little details that lead them closer to the truth. Because of their appreciation of probability, they can distinguish the signal from the noise.
Convex Optimization
Stephen Boyd - 2004
A comprehensive introduction to the subject, this book shows in detail how such problems can be solved numerically with great efficiency. The focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. The text contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance, and economics.
Engineering Mathematics
K.A. Stroud - 2001
Fully revised to meet the needs of the wide range of students beginning engineering courses, this edition has an extended Foundation section including new chapters on graphs, trigonometry, binomial series and functions and a CD-ROM
Pattern Classification
David G. Stork - 1973
Now with the second edition, readers will find information on key new topics such as neural networks and statistical pattern recognition, the theory of machine learning, and the theory of invariances. Also included are worked examples, comparisons between different methods, extensive graphics, expanded exercises and computer project topics.An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
The Calculus Lifesaver: All the Tools You Need to Excel at Calculus
Adrian Banner - 2007
The Calculus Lifesaver provides students with the essential tools they need not only to learn calculus, but to excel at it.All of the material in this user-friendly study guide has been proven to get results. The book arose from Adrian Banner's popular calculus review course at Princeton University, which he developed especially for students who are motivated to earn A's but get only average grades on exams. The complete course will be available for free on the Web in a series of videotaped lectures. This study guide works as a supplement to any single-variable calculus course or textbook. Coupled with a selection of exercises, the book can also be used as a textbook in its own right. The style is informal, non-intimidating, and even entertaining, without sacrificing comprehensiveness. The author elaborates standard course material with scores of detailed examples that treat the reader to an inner monologue--the train of thought students should be following in order to solve the problem--providing the necessary reasoning as well as the solution. The book's emphasis is on building problem-solving skills. Examples range from easy to difficult and illustrate the in-depth presentation of theory.The Calculus Lifesaver combines ease of use and readability with the depth of content and mathematical rigor of the best calculus textbooks. It is an indispensable volume for any student seeking to master calculus.Serves as a companion to any single-variable calculus textbookInformal, entertaining, and not intimidatingInformative videos that follow the book--a full forty-eight hours of Banner's Princeton calculus-review course--is available at Adrian Banner lecturesMore than 475 examples (ranging from easy to hard) provide step-by-step reasoningTheorems and methods justified and connections made to actual practiceDifficult topics such as improper integrals and infinite series covered in detailTried and tested by students taking freshman calculus
Mathematical Methods for Physicists
George B. Arfken - 1970
This work includes differential forms and the elegant forms of Maxwell's equations, and a chapter on probability and statistics. It also illustrates and proves mathematical relations.
The Great Equations: Breakthroughs in Science from Pythagoras to Heisenberg
Robert P. Crease - 2008
Crease tells the stories behind ten of the greatest equations in human history. Was Nobel laureate Richard Feynman really joking when he called Maxwell's electromagnetic equations the most significant event of the nineteenth century? How did Newton's law of gravitation influence young revolutionaries? Why has Euler's formula been called "God's equation," and why did a mysterious ecoterrorist make it his calling card? What role do betrayal, insanity, and suicide play in the second law of thermodynamics?The Great Equations tells the stories of how these equations were discovered, revealing the personal struggles of their ingenious originators. From "1 + 1 = 2" to Heisenberg's uncertainty principle, Crease locates these equations in the panoramic sweep of Western history, showing how they are as integral to their time and place of creation as are great works of art.
Pattern Recognition and Machine Learning
Christopher M. Bishop - 2006
However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
The Prime Number Conspiracy: The Biggest Ideas in Math from Quanta
Thomas Lin - 2018
The stories show that, as James Gleick puts it in the foreword, "inspiration strikes willy-nilly." One researcher thinks of quantum chaotic systems at a bus stop; another suddenly realizes a path to proving a theorem of number theory while in a friend's backyard; a statistician has a "bathroom sink epiphany" and discovers the key to solving the Gaussian correlation inequality. Readers of The Prime Number Conspiracy, says Quanta editor-in-chief Thomas Lin, are headed on "breathtaking intellectual journeys to the bleeding edge of discovery strapped to the narrative rocket of humanity's never-ending pursuit of knowledge."Quanta is the only popular publication that offers in-depth coverage of the latest breakthroughs in understanding our mathematical universe. It communicates mathematics by taking it seriously, wrestling with difficult concepts and clearly explaining them in a way that speaks to our innate curiosity about our world and ourselves. Readers of this volume will learn that prime numbers have decided preferences about the final digits of the primes that immediately follow them (the "conspiracy" of the title); consider whether math is the universal language of nature (allowing for "a unified theory of randomness"); discover surprising solutions (including a pentagon tiling proof that solves a century-old math problem); ponder the limits of computation; measure infinity; and explore the eternal question "Is mathematics good for you?"ContributorsAriel Bleicher, Robbert Dijkgraaf, Kevin Hartnett, Erica Klarreich, Thomas Lin, John Pavlus, Siobhan Roberts, Natalie WolchoverCopublished with Quanta Magazine
OpenIntro Statistics
David M. Diez - 2012
Our inaugural effort is OpenIntro Statistics. Probability is optional, inference is key, and we feature real data whenever possible. Files for the entire book are freely available at openintro.org, and anybody can purchase a paperback copy from amazon.com for under $10.The future for OpenIntro depends on the involvement and enthusiasm of our community. Visit our website, openintro.org. We provide free course management tools, including an online question bank, utilities for creating course quizzes, and many other helpful resources.CERTAIN CONTENT THAT APPEARS ON THIS SITE COMES FROM AMAZON SERVICES LLC. THIS CONTENT IS PROVIDED ‘AS IS’ AND IS SUBJECT TO CHANGE OR REMOVAL AT ANY TIME.Can’t find it here? Search Amazon.com Search: All Products Apparel & AccessoriesBabyBeautyBooksCamera & PhotoCell Phones & ServiceClassical MusicComputersComputer & Video GamesDVDElectronicsGourmet FoodHome & GardenMiscellaneousHealth & Personal CareJewelry & WatchesKitchen & HousewaresMagazine SubscriptionsMusicMusical InstrumentsSoftwareSports & OutdoorsTools & HardwareToys & GamesVHS Keywords: