The Go Programming Language


Alan A.A. Donovan - 2015
    It has been winning converts from dynamic language enthusiasts as well as users of traditional compiled languages. The former appreciate the robustness and efficiency that Go's lightweight type system brings to their code; the latter find Go's simplicity and fast tools a refreshing change. Thanks to its well-designed standard libraries and its excellent support for concurrent programming, Go is fast becoming the language of choice for distributed systems. The Go Programming Language is the definitive book on Go for the working programmer. It assumes no prior knowledge of Go, nor any other specific programming language, so you'll find it an accessible guide whether you come from JavaScript, Ruby, Python, Java, or C++. The book will quickly get you started using Go effectively from the beginning, and by the end, you will know how to use it well to write clear, idiomatic and efficient programs to solve real-world problems. You'll understand not just how to use its standard libraries, but how they work, and how to apply the same design techniques to your own projects. The earlier chapters will introduce you to the basic concepts of Go programming---numbers, strings, functions---while at the same time presenting important computer science concepts like recursion, and useful examples of graphics, UTF-8, and error handling. The chapters on methods and interfaces will show you a new way to think about object-oriented programming; the chapter on concurrency explains why concurrency is so important in modern programming, and how Go helps you handle it well. You'll also learn about Go's pragmatic but effective approach to testing; how to build, test, and manage projects using the go tool, and the art of metaprogramming using reflection. The book contains hundreds of interesting and practical examples that cover the whole language and a wide range of applications. The code samples from the book are available for download from gopl.io.

Perl Best Practices: Standards and Styles for Developing Maintainable Code


Damian Conway - 2005
    They aren't conscious of all the choices they make, like how they format their source, the names they use for variables, or the kinds of loops they use. They're focused entirely on problems they're solving, solutions they're creating, and algorithms they're implementing. So they write code in the way that seems natural, that happens intuitively, and that feels good.But if you're serious about your profession, intuition isn't enough. Perl Best Practices author Damian Conway explains that rules, conventions, standards, and practices not only help programmers communicate and coordinate with one another, they also provide a reliable framework for thinking about problems, and a common language for expressing solutions. This is especially critical in Perl, because the language is designed to offer many ways to accomplish the same task, and consequently it supports many incompatible dialects.With a good dose of Aussie humor, Dr. Conway (familiar to many in the Perl community) offers 256 guidelines on the art of coding to help you write better Perl code--in fact, the best Perl code you possibly can. The guidelines cover code layout, naming conventions, choice of data and control structures, program decomposition, interface design and implementation, modularity, object orientation, error handling, testing, and debugging.They're designed to work together to produce code that is clear, robust, efficient, maintainable, and concise, but Dr. Conway doesn't pretend that this is the one true universal and unequivocal set of best practices. Instead, Perl Best Practices offers coherent and widely applicable suggestions based on real-world experience of how code is actually written, rather than on someone's ivory-tower theories on how software ought to be created.Most of all, Perl Best Practices offers guidelines that actually work, and that many developers around the world are already using. Much like Perl itself, these guidelines are about helping you to get your job done, without getting in the way.Praise for Perl Best Practices from Perl community members:"As a manager of a large Perl project, I'd ensure that every member of my team has a copy of Perl Best Practices on their desk, and use it as the basis for an in-house style guide." -- Randal Schwartz"There are no more excuses for writing bad Perl programs. All levels of Perl programmer will be more productive after reading this book." -- Peter Scott"Perl Best Practices will be the next big important book in the evolution of Perl. The ideas and practices Damian lays down will help bring Perl out from under the embarrassing heading of "scripting languages". Many of us have known Perl is a real programming language, worthy of all the tasks normally delegated to Java and C++. With Perl Best Practices, Damian shows specifically how and why, so everyone else can see, too." -- Andy Lester"Damian's done what many thought impossible: show how to build large, maintainable Perl applications, while still letting Perl be the powerful, expressive language that programmers have loved for years." -- Bill Odom"Finally, a means to bring lasting order to the process and product of real Perl development teams." -- Andrew Sundstrom"Perl Best Practices provides a valuable education in how to write robust, maintainable P

Think Like a Programmer: An Introduction to Creative Problem Solving


V. Anton Spraul - 2012
    In this one-of-a-kind text, author V. Anton Spraul breaks down the ways that programmers solve problems and teaches you what other introductory books often ignore: how to Think Like a Programmer. Each chapter tackles a single programming concept, like classes, pointers, and recursion, and open-ended exercises throughout challenge you to apply your knowledge. You'll also learn how to:Split problems into discrete components to make them easier to solve Make the most of code reuse with functions, classes, and libraries Pick the perfect data structure for a particular job Master more advanced programming tools like recursion and dynamic memory Organize your thoughts and develop strategies to tackle particular types of problems Although the book's examples are written in C++, the creative problem-solving concepts they illustrate go beyond any particular language; in fact, they often reach outside the realm of computer science. As the most skillful programmers know, writing great code is a creative art—and the first step in creating your masterpiece is learning to Think Like a Programmer.

Agile Estimating and Planning


Mike Cohn - 2005
    In this book, Agile Alliance cofounder Mike Cohn discusses the philosophy of agile estimating and planning and shows you exactly how to get the job done, with real-world examples and case studies.Concepts are clearly illustrated and readers are guided, step by step, toward how to answer the following questions: What will we build? How big will it be? When must it be done? How much can I really complete by then? You will first learn what makes a good plan-and then what makes it agile.Using the techniques in Agile Estimating and Planning , you can stay agile from start to finish, saving time, conserving resources, and accomplishing more. Highlights include:Why conventional prescriptive planning fails and why agile planning works How to estimate feature size using story points and ideal days--and when to use each How and when to re-estimate How to prioritize features using both financial and nonfinancial approaches How to split large features into smaller, more manageable ones How to plan iterations and predict your team's initial rate of progress How to schedule projects that have unusually high uncertainty or schedule-related risk How to estimate projects that will be worked on by multiple teams Agile Estimating and Planning supports any agile, semiagile, or iterative process, including Scrum, XP, Feature-Driven Development, Crystal, Adaptive Software Development, DSDM, Unified Process, and many more. It will be an indispensable resource for every development manager, team leader, and team member.

The Rust Programming Language


Steve Klabnik
    This is the undisputed go-to guide to Rust, written by two members of the Rust core team, with feedback and contributions from 42 members of the community. The book assumes that you’ve written code in another programming language but makes no assumptions about which one, meaning the material is accessible and useful to developers from a wide variety of programming backgrounds.Known by the Rust community as "The Book," The Rust Programming Language includes concept chapters, where you’ll learn about a particular aspect of Rust, and project chapters, where you’ll apply what you’ve learned so far to build small programs.The Book opens with a quick hands-on project to introduce the basics then explores key concepts in depth, such as ownership, the type system, error handling, and fearless concurrency. Next come detailed explanations of Rust-oriented perspectives on topics like pattern matching, iterators, and smart pointers, with concrete examples and exercises--taking you from theory to practice.The Rust Programming Language will show you how to: Grasp important concepts unique to Rust like ownership, borrowing, and lifetimes Use Cargo, Rust’s built-in package manager, to build and maintain your code, including downloading and building dependencies Effectively use Rust’s zero-cost abstractions and employ your ownYou’ll learn to develop reliable code that’s speed and memory efficient, while avoiding the infamous and arcane programming pitfalls common at the systems level. When you need to dive down into lower-level control, this guide will show you how without taking on the customary risk of crashes or security holes and without requiring you to learn the fine points of a fickle toolchain.You’ll also learn how to create command line programs, build single- and multithreaded web servers, and much more.The Rust Programming Language fully embraces Rust’s potential to empower its users. This friendly and approachable guide will help you build not only your knowledge of Rust but also your ability to program with confidence in a wider variety of domains.

Introduction to Algorithms


Thomas H. Cormen - 1989
    Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.

A Smarter Way to Learn JavaScript: The new approach that uses technology to cut your effort in half


Mark Myers - 2013
     Master each chapter with free interactive exercises online. Live simulation lets you see your practice code run in your browser. 2,000 lines of color-keyed sample code break it all down into easy-to-learn chunks. Extra help through the rough spots so you're less likely to get stuck. Tested on non-coders—including the author's technophobe wife. Become fluent in all the JavaScript fundamentals, in half the time. Display alert messages to the user Gather information through prompts Manipulate variables Build statements Do math Use operators Concatenate text Run routines based on conditions Compare values Work with arrays Run automated routines Display custom elements on the webpage Generate random numbers Manipulate decimals Round numbers Create loops Use functions Find the current date and time Measure time intervals Create a timer Respond to the user's actions Swap images Control colors on the webpage Change any element on the webpage Improvise new HTML markup on the fly Use the webpage DOM structure Insert comments Situate scripts effectively Create and change objects Automate object creation Control the browser's actions Fill the browser window with custom content Check forms for invalid entries Deal with errors Make a more compelling website Increase user-friendliness Keep your user engaged

Embedded Android: Porting, Extending, and Customizing


Karim Yaghmour - 2011
    You'll also receive updates when significant changes are made, as well as the final ebook version. Embedded Android is for Developers wanting to create embedded systems based on Android and for those wanting to port Android to new hardware, or creating a custom development environment. Hackers and moders will also find this an indispensible guide to how Android works.

Programming Clojure


Stuart Halloway - 2009
    Clojure's clean, careful design lets you write programs that get right to the essence of a problem, without a lot of clutter and ceremony. Clojure is Lisp reloaded. Clojure has the power inherent in Lisp, but is not constrained by the history of Lisp. Clojure is a functional language. Data structures are immutable, and functions tend to be side-effect free. This makes it easier to write correct programs, and to compose large programs from smaller ones. Clojure is concurrent. Rather than error-prone locking, Clojure provides software transactional memory. Clojure embraces Java. Calling from Clojure to Java is direct, and goes through no translation layer. Clojure is fast. Wherever you need it, you can get the exact same performance that you could get from hand-written Java code. Many other languages offer some of these features, but the combination of them all makes Clojure sparkle. Programming Clojure shows you why these features are so important, and how you can use Clojure to build powerful programs quickly.

Fundamentals of Software Architecture: An Engineering Approach


Mark Richards - 2020
    Until now. This practical guide provides the first comprehensive overview of software architecture's many aspects. You'll examine architectural characteristics, architectural patterns, component determination, diagramming and presenting architecture, evolutionary architecture, and many other topics.Authors Neal Ford and Mark Richards help you learn through examples in a variety of popular programming languages, such as Java, C#, JavaScript, and others. You'll focus on architecture principles with examples that apply across all technology stacks.

Deep Learning


Ian Goodfellow - 2016
    Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Kotlin for Android Developers: Learn Kotlin the easy way while developing an Android App


Antonio Leiva - 2016
    

REST in Practice: Hypermedia and Systems Architecture


Jim Webber - 2010
    You'll learn techniques for implementing specific Web technologies and patterns to solve the needs of a typical company as it grows from modest beginnings to become a global enterprise.Learn basic Web techniques for application integrationUse HTTP and the Web’s infrastructure to build scalable, fault-tolerant enterprise applicationsDiscover the Create, Read, Update, Delete (CRUD) pattern for manipulating resourcesBuild RESTful services that use hypermedia to model state transitions and describe business protocolsLearn how to make Web-based solutions secure and interoperableExtend integration patterns for event-driven computing with the Atom Syndication Format and implement multi-party interactions in AtomPubUnderstand how the Semantic Web will impact systems design

Python Cookbook


David Beazley - 2002
    Packed with practical recipes written and tested with Python 3.3, this unique cookbook is for experienced Python programmers who want to focus on modern tools and idioms.Inside, you’ll find complete recipes for more than a dozen topics, covering the core Python language as well as tasks common to a wide variety of application domains. Each recipe contains code samples you can use in your projects right away, along with a discussion about how and why the solution works.Topics include:Data Structures and AlgorithmsStrings and TextNumbers, Dates, and TimesIterators and GeneratorsFiles and I/OData Encoding and ProcessingFunctionsClasses and ObjectsMetaprogrammingModules and PackagesNetwork and Web ProgrammingConcurrencyUtility Scripting and System AdministrationTesting, Debugging, and ExceptionsC Extensions

Python for Data Analysis


Wes McKinney - 2011
    It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you'll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language.Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies. It's ideal for analysts new to Python and for Python programmers new to scientific computing.Use the IPython interactive shell as your primary development environmentLearn basic and advanced NumPy (Numerical Python) featuresGet started with data analysis tools in the pandas libraryUse high-performance tools to load, clean, transform, merge, and reshape dataCreate scatter plots and static or interactive visualizations with matplotlibApply the pandas groupby facility to slice, dice, and summarize datasetsMeasure data by points in time, whether it's specific instances, fixed periods, or intervalsLearn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples