What to Think About Machines That Think: Today's Leading Thinkers on the Age of Machine Intelligence


John Brockman - 2015
    Today, Stephen Hawking believes that AI “could spell the end of the human race.” At the very least, its development raises complicated moral issues with powerful real-world implications—for us and for our machines.In this volume, recording artist Brian Eno proposes that we’re already part of an AI: global civilization, or what TED curator Chris Anderson elsewhere calls the hive mind. And author Pamela McCorduck considers what drives us to pursue AI in the first place.On the existential threat posed by superintelligent machines, Steven Pinker questions the likelihood of a robot uprising. Douglas Coupland traces discomfort with human-programmed AI to deeper fears about what constitutes “humanness.” Martin Rees predicts the end of organic thinking, while Daniel C. Dennett explains why he believes the Singularity might be an urban legend.Provocative, enriching, and accessible, What to Think About Machines That Think may just be a practical guide to the not-so-distant future.

The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World


Pedro Domingos - 2015
    In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.

Pattern Classification


David G. Stork - 1973
    Now with the second edition, readers will find information on key new topics such as neural networks and statistical pattern recognition, the theory of machine learning, and the theory of invariances. Also included are worked examples, comparisons between different methods, extensive graphics, expanded exercises and computer project topics.An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Genes vs Cultures vs Consciousness: A Brief Story of Our Computational Minds


Andres Campero - 2019
    It touches on its evolutionary development, its algorithmic nature and its scientific history by bridging ideas across Neuroscience, Computer Science, Biotechnology, Evolutionary History, Cognitive Science, Political Philosophy, and Artificial Intelligence.Never before had there been nearly as many scientists, resources or productive research focused on these topics, and humanity has achieved some understanding and some clarification. With the speed of progress it is timely to communicate an overreaching perspective, this book puts an emphasis on conveying the essential questions and what we know about their answers in a simple, clear and exciting way.Humans, along with the first RNA molecules, the first life forms, the first brains, the first conscious animals, the first societies and the first artificial agents constitute an amazing and crucial development in a path of increasingly complex computational intelligence. And yet, we occupy a minuscule time period in the history of Earth, a history that has been written by Genes, by Cultures and by Consciousnesses. If we abandon our anthropomorphic bias it becomes obvious that Humans are not so special after all. We are an important but short and transitory step among many others in a bigger story. The story of our computational minds, which is ours but not only ours. What is the relationship between computation, cognition and everything else? What is life and how did it originate? What is the role of culture in human minds? What do we know about the algorithmic nature of the mind, can we engineer it? What is the computational explanation of consciousness? What are some possible future steps in the evolution of minds? The underlying thread is the computational nature of the Mind which results from the mixture of Genes, Cultures and Consciousness. While these three interact in complex ways, they are ultimately computational systems on their own which appeared at different stages of history and which follow their own selective processes operating at different time scales. As technology progresses, the distinction between the three components materializes and will be a key determinant of the future.Among the many topics covered are the origin of life, the concept of computation and its relation to Turing Machines, cultural evolution and the notion of a Selfish Meme, free will and determinism, moral relativity, the hard problem of consciousness, the different theories of concepts from the perspective of cognitive science, the current status of AI and Machine Learning including the symbolic vs sub-symbolic dichotomy, the contrast between logical reasoning and neural networks, and the recent history of Deep Learning, Geoffrey Hinton, DeepMind and its algorithm AlphaGo. It also develops on the history of science and looks into the possible future building on the work of authors like Daniel Dennett, Yuval Harari, Richard Dawkins, Francis Crick, George Church, David Chalmers, Susan Carey, Stanislas Dehaene, Robert Boyd, Joseph Henrich, Daniel Kahneman, Moran Cerf, Josh Tenenbaum, David Deutsch, Steven Pinker, Ray Kurzweil, John von Neumann, Herbert Simon and many more. Andres Campero is a researcher and PhD student at the Brain and Cognitive Sciences Department and at the Computer Science and Artificial Intelligence Laboratory at the Massachusetts Institute of Technology (MIT).

How to Create a Mind: The Secret of Human Thought Revealed


Ray Kurzweil - 2012
    In How to Create a Mind, Kurzweil presents a provocative exploration of the most important project in human-machine civilization—reverse engineering the brain to understand precisely how it works and using that knowledge to create even more intelligent machines.Kurzweil discusses how the brain functions, how the mind emerges from the brain, and the implications of vastly increasing the powers of our intelligence in addressing the world’s problems. He thoughtfully examines emotional and moral intelligence and the origins of consciousness and envisions the radical possibilities of our merging with the intelligent technology we are creating.Certain to be one of the most widely discussed and debated science books of the year, How to Create a Mind is sure to take its place alongside Kurzweil’s previous classics which include Fantastic Voyage: Live Long Enough to Live Forever and The Age of Spiritual Machines.

Superintelligence: Paths, Dangers, Strategies


Nick Bostrom - 2014
    The human brain has some capabilities that the brains of other animals lack. It is to these distinctive capabilities that our species owes its dominant position. If machine brains surpassed human brains in general intelligence, then this new superintelligence could become extremely powerful--possibly beyond our control. As the fate of the gorillas now depends more on humans than on the species itself, so would the fate of humankind depend on the actions of the machine superintelligence.But we have one advantage: we get to make the first move. Will it be possible to construct a seed Artificial Intelligence, to engineer initial conditions so as to make an intelligence explosion survivable? How could one achieve a controlled detonation?

Common Sense, the Turing Test, and the Quest for Real AI


Hector J. Levesque - 2017
    AI is all the rage, and the buzziest AI buzz surrounds adaptive machine learning computer systems that learn intelligent behavior from massive amounts of data. This is what powers a driverless car, for example. In this book, Hector Levesque shifts the conversation to -good old fashioned artificial intelligence, - which is based not on heaps of data but on understanding commonsense intelligence. This kind of artificial intelligence is equipped to handle situations that depart from previous patterns -- as we do in real life, when, for example, we encounter a washed-out bridge or when the barista informs us there's no more soy milk.Levesque considers the role of language in learning. He argues that a computer program that passes the famous Turing Test could be a mindless zombie, and he proposes another way to test for intelligence -- the Winograd Schema Test, developed by Levesque and his colleagues. -If our goal is to understand intelligent behavior, we had better understand the difference between making it and faking it, - he observes. He identifies a possible mechanism behind common sense and the capacity to call on background knowledge: the ability to represent objects of thought symbolically. As AI migrates more and more into everyday life, we should worry if systems without common sense are making decisions where common sense is needed.

Artificial Intelligence in Practice: How 50 Successful Companies Used AI and Machine Learning to Solve Problems


Bernard Marr - 2019
    Presenting 50 case studies of actual situations, this book demonstrates practical applications to issues faced by businesses around the globe. The rapidly evolving field of artificial intelligence has expanded beyond research labs and computer science departments and made its way into the mainstream business environment. Artificial intelligence and machine learning are cited as the most important modern business trends to drive success. It is used in areas ranging from banking and finance to social media and marketing. This technology continues to provide innovative solutions to businesses of all sizes, sectors and industries. This engaging and topical book explores a wide range of cases illustrating how businesses use AI to boost performance, drive efficiency, analyse market preferences and many others. Best-selling author and renowned AI expert Bernard Marr reveals how machine learning technology is transforming the way companies conduct business. This detailed examination provides an overview of each company, describes the specific problem and explains how AI facilitates resolution. Each case study provides a comprehensive overview, including some technical details as well as key learning summaries: Understand how specific business problems are addressed by innovative machine learning methods Explore how current artificial intelligence applications improve performance and increase efficiency in various situations Expand your knowledge of recent AI advancements in technology Gain insight on the future of AI and its increasing role in business and industry Artificial Intelligence in Practice: How 50 Successful Companies Used Artificial Intelligence to Solve Problems is an insightful and informative exploration of the transformative power of technology in 21st century commerce.

Grokking Deep Learning


Andrew W. Trask - 2017
    Loosely based on neuron behavior inside of human brains, these systems are rapidly catching up with the intelligence of their human creators, defeating the world champion Go player, achieving superhuman performance on video games, driving cars, translating languages, and sometimes even helping law enforcement fight crime. Deep Learning is a revolution that is changing every industry across the globe.Grokking Deep Learning is the perfect place to begin your deep learning journey. Rather than just learn the “black box” API of some library or framework, you will actually understand how to build these algorithms completely from scratch. You will understand how Deep Learning is able to learn at levels greater than humans. You will be able to understand the “brain” behind state-of-the-art Artificial Intelligence. Furthermore, unlike other courses that assume advanced knowledge of Calculus and leverage complex mathematical notation, if you’re a Python hacker who passed high-school algebra, you’re ready to go. And at the end, you’ll even build an A.I. that will learn to defeat you in a classic Atari game.

Deep Learning with Python


François Chollet - 2017
    It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.

Neural Networks and Deep Learning


Michael Nielsen - 2013
    The book will teach you about:* Neural networks, a beautiful biologically-inspired programming paradigm which enables a computer to learn from observational data* Deep learning, a powerful set of techniques for learning in neural networksNeural networks and deep learning currently provide the best solutions to many problems in image recognition, speech recognition, and natural language processing. This book will teach you the core concepts behind neural networks and deep learning.

Systems Analysis and Design


Alan Dennis - 2002
    Building on their experience as professional systems analysts and award-winning teachers, authors Dennis, Wixom, and Roth capture the experience of developing and analyzing systems in a way that students can understand and apply.With Systems Analysis and Design, 4th edition , students will leave the course with experience that is a rich foundation for further work as a systems analyst.

The Book of Why: The New Science of Cause and Effect


Judea Pearl - 2018
    Today, that taboo is dead. The causal revolution, instigated by Judea Pearl and his colleagues, has cut through a century of confusion and established causality -- the study of cause and effect -- on a firm scientific basis. His work explains how we can know easy things, like whether it was rain or a sprinkler that made a sidewalk wet; and how to answer hard questions, like whether a drug cured an illness. Pearl's work enables us to know not just whether one thing causes another: it lets us explore the world that is and the worlds that could have been. It shows us the essence of human thought and key to artificial intelligence. Anyone who wants to understand either needs The Book of Why.

Artificial Intelligence for Humans, Volume 1: Fundamental Algorithms


Jeff Heaton - 2013
    This book teaches basic Artificial Intelligence algorithms such as dimensionality, distance metrics, clustering, error calculation, hill climbing, Nelder Mead, and linear regression. These are not just foundational algorithms for the rest of the series, but are very useful in their own right. The book explains all algorithms using actual numeric calculations that you can perform yourself. Artificial Intelligence for Humans is a book series meant to teach AI to those without an extensive mathematical background. The reader needs only a knowledge of basic college algebra or computer programming—anything more complicated than that is thoroughly explained. Every chapter also includes a programming example. Examples are currently provided in Java, C#, R, Python and C. Other languages planned.

The Sciences of the Artificial


Herbert A. Simon - 1969
    There are updates throughout the book as well. These take into account important advances in cognitive psychology and the science of design while confirming and extending the book's basic thesis: that a physical symbol system has the necessary and sufficient means for intelligent action. The chapter "Economic Reality" has also been revised to reflect a change in emphasis in Simon's thinking about the respective roles of organizations and markets in economic systems."People sometimes ask me what they should read to find out about artificial intelligence. Herbert Simon's book The Sciences of the Artificial is always on the list I give them. Every page issues a challenge to conventional thinking, and the layman who digests it well will certainly understand what the field of artificial intelligence hopes to accomplish. I recommend it in the same spirit that I recommend Freud to people who ask about psychoanalysis, or Piaget to those who ask about child psychology: If you want to learn about a subject, start by reading its founding fathers." -- George A. Miller