Book picks similar to
Dynamical Systems: Examples of Complex Behaviour by Jürgen Jost
dynamical
operations
research
equations
Graph Theory With Applications To Engineering And Computer Science
Narsingh Deo - 2004
GRAPH THEORY WITH APPLICATIONS TO ENGINEERING AND COMPUTER SCIENCE-PHI-DEO, NARSINGH-1979-EDN-1
Artificial Intelligence
Patrick Henry Winston - 1977
From the book, you learn why the field is important, both as a branch of engineering and as a science. If you are a computer scientist or an engineer, you will enjoy the book, because it provides a cornucopia of new ideas for representing knowledge, using knowledge, and building practical systems. If you are a psychologist, biologist, linguist, or philosopher, you will enjoy the book because it provides an exciting computational perspective on the mystery of intelligence. The Knowledge You Need This completely rewritten and updated edition of Artificial Intelligence reflects the revolutionary progress made since the previous edition was published. Part I is about representing knowledge and about reasoning methods that make use of knowledge. The material covered includes the semantic-net family of representations, describe and match, generate and test, means-ends analysis, problem reduction, basic search, optimal search, adversarial search, rule chaining, the rete algorithm, frame inheritance, topological sorting, constraint propagation, logic, truth
Machine Learning for Hackers
Drew Conway - 2012
Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. "Machine Learning for Hackers" is ideal for programmers from any background, including business, government, and academic research.Develop a naive Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a "whom to follow" recommendation system from Twitter data
Understanding Symbolic Logic
Virginia Klenk - 1983
Each chapter, or unit, is divided into easily comprehended small "bites" that enable learners to master the material step-by-step, rather than being overwhelmed by masses of information covered too quickly. The book provides extremely detailed explanations of procedures and techniques, and was written in the conviction that anyone can thoroughly master its content. A four-part organization covers sentential logic, monadic predicate logic, relational predicate logic, and extra credit units that glimpse into alternative methods of logic and more advanced topics. For individuals interested in the formal study of logic.
Information: A Very Short Introduction
Luciano Floridi - 2010
In this Very Short Introduction, one of the world's leading authorities on the philosophy of information and on information ethics, Luciano Floridi, offers an illuminating exploration of information as it relates to both philosophy and science. He discusses the roots of the concept of information in mathematics and science, and considers the role of information in several fields, including biology. Floridi also discusses concepts such as "Infoglut" (too much information to process) and the emergence of an information society, and he addresses the nature of information as a communication process and its place as a physical phenomenon. Perhaps more important, he explores information's meaning and value, and ends by considering the broader social and ethical issues relating to information, including problems surrounding accessibility, privacy, ownership, copyright, and open source. This book helps us understand the true meaning of the concept and how it can be used to understand our world.About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundreds of key topics, from philosophy to Freud, quantum theory to Islam.
Learning SAS by Example: A Programmer's Guide
Ron Cody - 2007
In an instructive and conversational tone, Cody clearly explains how to program SAS, illustrating with one or more real-life examples and giving a detailed description of how the program works.
Bayesian Reasoning and Machine Learning
David Barber - 2012
They are established tools in a wide range of industrial applications, including search engines, DNA sequencing, stock market analysis, and robot locomotion, and their use is spreading rapidly. People who know the methods have their choice of rewarding jobs. This hands-on text opens these opportunities to computer science students with modest mathematical backgrounds. It is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models. Students learn more than a menu of techniques, they develop analytical and problem-solving skills that equip them for the real world. Numerous examples and exercises, both computer based and theoretical, are included in every chapter. Resources for students and instructors, including a MATLAB toolbox, are available online.
Data Mining: Practical Machine Learning Tools and Techniques
Ian H. Witten - 1999
This highly anticipated fourth edition of the most ...Download Link : readmeaway.com/download?i=0128042915 0128042915 Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) PDF by Ian H. WittenRead Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) PDF from Morgan Kaufmann,Ian H. WittenDownload Ian H. Witten's PDF E-book Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems)
Beginning Web Programming with HTML, XHTML and CSS
Jon Duckett - 2004
It follows standards-based principles, but also teaches readers ways around problems they are likely to face using (X)HTML.While XHTML is the "current" standard, the book still covers HTML because many people do not yet understand that XHTML is the official successor to HTML, and many readers will still stick with HTML for backward compatibility and simpler/informal Web pages that don't require XHTML compliance.The book teaches basic principles of usability and accessibility along the way, to get users into the mode of developing Web pages that will be available to as many viewers as possible from the start. The book also covers the most commonly used programming/scripting language -- JavaScript -- and provides readers with a roadmap of other Web technologies to learn after mastering this book to add more functionality to their sites.
Linear Algebra
Stephen H. Friedberg - 1979
This top-selling, theorem-proof text presents a careful treatment of the principal topics of linear algebra, and illustrates the power of the subject through a variety of applications. It emphasizes the symbiotic relationship between linear transformations and matrices, but states theorems in the more general infinite-dimensional case where appropriate.
Introduction to Probability
Dimitri P. Bertsekas - 2002
This is the currently used textbook for "Probabilistic Systems Analysis," an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains, a number of more advanced topics, from which an instructor can choose to match the goals of a particular course. These topics include transforms, sums of random variables, least squares estimation, the bivariate normal distribution, and a fairly detailed introduction to Bernoulli, Poisson, and Markov processes. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis has been just intuitively explained in the text, but is developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems. The book has been widely adopted for classroom use in introductory probability courses within the USA and abroad.
HTML for the World Wide Web with XHTML and CSS (Visual QuickStart Guide)
Elizabeth Castro - 2002
The task-based approach teaches readers how to combine HTML and CSS to create sharp and consistent Web pages.
Introduction to Machine Learning with Python: A Guide for Data Scientists
Andreas C. Müller - 2015
If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination.You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Muller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book.With this book, you'll learn:Fundamental concepts and applications of machine learningAdvantages and shortcomings of widely used machine learning algorithmsHow to represent data processed by machine learning, including which data aspects to focus onAdvanced methods for model evaluation and parameter tuningThe concept of pipelines for chaining models and encapsulating your workflowMethods for working with text data, including text-specific processing techniquesSuggestions for improving your machine learning and data science skills
An Incomplete Education: 3,684 Things You Should Have Learned But Probably Didn't
Judy Jones - 1987
Now this instant classic has been completely updated, outfitted with a whole new arsenal of indispensable knowledge on global affairs, popular culture, economic trends, scientific principles, and modern arts. Here's your chance to brush up on all those subjects you slept through in school, reacquaint yourself with all the facts you once knew (then promptly forgot), catch up on major developments in the world today, and become the Renaissance man or woman you always knew you could be! How do you tell the Balkans from the Caucasus? What's the difference between fission and fusion? Whigs and Tories? Shiites and Sunnis? Deduction and induction? Why aren't all Shakespearean comedies necessarily thigh-slappers? What are transcendental numbers and what are they good for? What really happened in Plato's cave? Is postmodernism dead or just having a bad hair day? And for extra credit, when should you use the adjective continual and when should you use continuous? An Incomplete Education answers these and thousands of other questions with incomparable wit, style, and clarity. American Studies, Art History, Economics, Film, Literature, Music, Philosophy, Political Science, Psychology, Religion, Science, and World History: Here's the bottom line on each of these major disciplines, distilled to its essence and served up with consummate flair.
Deep Learning with Python
François Chollet - 2017
It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.