Book picks similar to
Cause and Correlation in Biology: A User's Guide to Path Analysis, Structural Equations and Causal Inference by Bill Shipley
calibre
ifvlibrary_loan
mathematics
research
Gene Cloning and DNA Analysis: An Introduction
Terence A. Brown - 2006
Assuming the reader has little prior knowledge of the subject its importance, the principles of the techniques used and their applications are all carefully laid out, with over 250 clearly presented two-colour illustrations. In addition to a number of informative changes to the text throughout the book, the final four chapters have been significantly updated and extended to reflect the striking advances made in recent years in the applications of gene cloning and DNA analysis in biotechnology: Extended chapter on agriculture including new material on glyphosate resistant plantsNew section on the uses of gene cloning and PCR in archaeologyCoverage of ethical concerns relating to pharming, gene therapy and GM crops Gene Cloning and DNA Analysis remains an essential introductory text to a wide range of biological sciences students; including genetics and genomics, molecular biology, biochemistry, immunology and applied biology. It is also a perfect introductory text for any professional needing to learn the basics of the subject. All libraries in universities where medical, life and biological sciences are studied and taught should have copies available on their shelves. View the Gene Cloning and DNA Analysis webpage at www.blackwellpublishing.com/genecloning
Machine Learning
Tom M. Mitchell - 1986
Mitchell covers the field of machine learning, the study of algorithms that allow computer programs to automatically improve through experience and that automatically infer general laws from specific data.
Qualitative Research Methods for the Social Sciences
Bruce L. Berg - 1988
It also stresses the importance of ethics in research and taking the time to properly design and think through any research endeavor.
Causal Inference in Statistics: A Primer
Judea Pearl - 2016
Judea Pearl presents a book ideal for beginners in statistics, providing a comprehensive introduction to the field of causality. Examples from classical statistics are presented throughout to demonstrate the need for causality in resolving decision-making dilemmas posed by data. Causal methods are also compared to traditional statistical methods, whilst questions are provided at the end of each section to aid student learning.
Fundamentals of General, Organic, and Biological Chemistry
John McMurry - 1992
Effectively coversthe essentials of allied health chemistry without excessive andunnecessary detail. Puts chemistry in the context of everyday life.Covers biochemistry thoroughly to allow for flexible treatment andplaces emphasis on its relevance to society. Updates and expandscontent throughout in topics such as DNA, genomics, chemicalmessengers, the new food pyramid, and the modern view of nucleicacid chemistry and protein synthesis. Revises illustrations throughoutfor increased effectiveness. Redesigned diagrams and bulleted lists fora clearer layout.
Mathematics: The Core Course For A Level (Core Course)
Linda Bostock - 1981
Worked examples and exercises support the text. An ELBS/LPBB edition is available.
Using Multivariate Statistics
Barbara G. Tabachnick - 1983
It givessyntax and output for accomplishing many analyses through the mostrecent releases of SAS, SPSS, and SYSTAT, some not available insoftware manuals. The book maintains its practical approach, stillfocusing on the benefits and limitations of applications of a techniqueto a data set -- when, why, and how to do it. Overall, it providesadvanced students with a timely and comprehensive introduction totoday's most commonly encountered statistical and multivariatetechniques, while assuming only a limited knowledge of higher-levelmathematics.
Survey Methodology
Robert M. Groves - 2004
Survey Methodology describes the basic principles of survey design discovered in methodological research over recent years and offers guidance for making successful decisions in the design and execution of high quality surveys. Written by six nationally recognized experts in the field, this book covers the major considerations in designing and conducting a sample survey. Topical, accessible, and succinct, this book represents the state of the science in survey methodology. Employing the "total survey error" paradigm as an organizing framework, it merges the science of surveys with state-of-the-art practices. End-of-chapter terms, references, and exercises enhance its value as a reference for practitioners and as a text for advanced students.
The Art of Statistics: How to Learn from Data
David Spiegelhalter - 2019
Statistics are everywhere, as integral to science as they are to business, and in the popular media hundreds of times a day. In this age of big data, a basic grasp of statistical literacy is more important than ever if we want to separate the fact from the fiction, the ostentatious embellishments from the raw evidence -- and even more so if we hope to participate in the future, rather than being simple bystanders. In The Art of Statistics, world-renowned statistician David Spiegelhalter shows readers how to derive knowledge from raw data by focusing on the concepts and connections behind the math. Drawing on real world examples to introduce complex issues, he shows us how statistics can help us determine the luckiest passenger on the Titanic, whether a notorious serial killer could have been caught earlier, and if screening for ovarian cancer is beneficial. The Art of Statistics not only shows us how mathematicians have used statistical science to solve these problems -- it teaches us how we too can think like statisticians. We learn how to clarify our questions, assumptions, and expectations when approaching a problem, and -- perhaps even more importantly -- we learn how to responsibly interpret the answers we receive. Combining the incomparable insight of an expert with the playful enthusiasm of an aficionado, The Art of Statistics is the definitive guide to stats that every modern person needs.
Pattern Recognition and Machine Learning
Christopher M. Bishop - 2006
However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
The Calculus Direct
John Weiss - 2009
The calculus is not a hard subject and I prove this through an easy to read and obvious approach spanning only 100 pages. I have written this book with the following type of student in mind; the non-traditional student returning to college after a long break, a notoriously weak student in math who just needs to get past calculus to obtain a degree, and the garage tinkerer who wishes to understand a little more about the technical subjects. This book is meant to address the many fundamental thought-blocks that keep the average 'mathaphobe' (or just an interested person who doesn't have the time to enroll in a course) from excelling in mathematics in a clear and concise manner. It is my sincerest hope that this book helps you with your needs.Show more Show less
The Productive Researcher
Mark S. Reed - 2017
He draws on interviews with some of the world’s highest performing researchers, the literature and his own experience to identify a small number of important insights that can transform how researchers work. The book is based on an unparalleled breadth of interdisciplinary evidence that speaks directly to researchers of all disciplines and career stages. The lessons in this book will make you more productive, more satisfied with what you produce, and enable you to be happy working less, and being more. The hardback edition has the title and design imprinted on a fabric cover, hand crafted by a book maker in Yorkshire. It contains spectacular colour photography throughout. Chapters are accompanied by close-up images of trees that build up to the forest metaphor that concludes the book. These are bookended by wide perspective canopy images that accompany the front matter (from which the cover design is derived) and concluding chapter. The overall effect is a touch and feel that makes this a book to savour. Mark Reed is Professor of Socio-Technical Innovation at Newcastle University and Visiting Professor at Birmingham City University and the University of Leeds. He has over 140 publications that have been cited more than 10,000 times. He is author of The Research Impact Handbook, which he has used to train over 4000 researchers from more than 200 institutions in 55 countries.
Statistical Rethinking: A Bayesian Course with Examples in R and Stan
Richard McElreath - 2015
Reflecting the need for even minor programming in today's model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work.The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation.By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling.Web ResourceThe book is accompanied by an R package (rethinking) that is available on the author's website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.
Engineering Mathematics
K.A. Stroud - 2001
Fully revised to meet the needs of the wide range of students beginning engineering courses, this edition has an extended Foundation section including new chapters on graphs, trigonometry, binomial series and functions and a CD-ROM
Statistics for Management
Richard I. Levin - 1978
Like its predecessors, the seventh edition includes the absolute minimum of mathematical/statistical notation necessary to teach the material. Concepts are fully explained in simple, easy-to-understand language as they are presented, making the book an excellent source from which to learn and teach. After each discussion, readers are guided through real-world examples to show how book principles work in professional practice. Includes easy-to-understand explanations of difficult statistical topics, such as sampling distributions, relationship between confidence level and confidence interval, interpreting r-square. A complete package of teaching/learning aids is provided in every chapter, including chapter review exercises, chapter concepts tests,"Statistics at Work" conceptual cases, "Computer Database Exercises," "From the Textbook to the Real-World Examples." This ISBN is in two volumes Part A and Part B.