Book picks similar to
Modern Applied Statistics with S by W.N. Venables
statistics
science
bookshelf
stopped-reading
Discrete-Event System Simulation
Jerry Banks - 1983
This text provides a basic treatment of discrete-event simulation, including the proper collection and analysis of data, the use of analytic techniques, verification and validation of models, and designing simulation experiments. It offers an up-to-date treatment of simulation of manufacturing and material handling systems, computer systems, and computer networks. Students and instructors will find a variety of resources at the associated website, www.bcnn.net, including simulation source code for download, additional exercises and solutions, web links and errata.
Psychology of Learning for Instruction
Marcy P. Driscoll - 1993
Psychology of Learning for Instruction, Third Edition, focuses on the applications and implications of the learning theories. Using excellent examples ranging from primary school instruction to corporate training, this text combines the latest thinking and research to give readers the opportunity to explore the individual theories as viewed by the experts. Readers are encouraged to apply "reflective practice," which is designed to foster a critical and reflective mode of thinking when considering any particular approach to learning and instruction. Provides readers with the practical knowledge needed to apply learning theories to instruction. KEY TOPICS: This text addresses learning as it relates to behavior, cognition, development, biology, motivation and instruction. MARKET: Pre-service and in-service teachers, and educational psychologists.
Machine Learning: A Probabilistic Perspective
Kevin P. Murphy - 2012
Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Applied Predictive Modeling
Max Kuhn - 2013
Non- mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics. Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages. Dr. Johnson has more than a decade of statistical consulting and predictive modeling experience in pharmaceutical research and development. He is a co-founder of Arbor Analytics, a firm specializing in predictive modeling and is a former Director of Statistics at Pfizer Global R&D. His scholarly work centers on the application and development of statistical methodology and learning algorithms. Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. Addressing practical concerns extends beyond model fitting to topics such as handling class imbalance, selecting predictors, and pinpointing causes of poor model performance-all of which are problems that occur frequently in practice. The text illustrates all parts of the modeling process through many hands-on, real-life examples. And every chapter contains extensive R code f
Python for Data Analysis
Wes McKinney - 2011
It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you'll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language.Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies. It's ideal for analysts new to Python and for Python programmers new to scientific computing.Use the IPython interactive shell as your primary development environmentLearn basic and advanced NumPy (Numerical Python) featuresGet started with data analysis tools in the pandas libraryUse high-performance tools to load, clean, transform, merge, and reshape dataCreate scatter plots and static or interactive visualizations with matplotlibApply the pandas groupby facility to slice, dice, and summarize datasetsMeasure data by points in time, whether it's specific instances, fixed periods, or intervalsLearn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples
Data Visualization: A Practical Introduction
Kieran Healy - 2018
It explains what makes some graphs succeed while others fail, how to make high-quality figures from data using powerful and reproducible methods, and how to think about data visualization in an honest and effective way.Data Visualization builds the reader's expertise in ggplot2, a versatile visualization library for the R programming language. Through a series of worked examples, this accessible primer then demonstrates how to create plots piece by piece, beginning with summaries of single variables and moving on to more complex graphics. Topics include plotting continuous and categorical variables; layering information on graphics; producing effective "small multiple" plots; grouping, summarizing, and transforming data for plotting; creating maps; working with the output of statistical models; and refining plots to make them more comprehensible.Effective graphics are essential to communicating ideas and a great way to better understand data. This book provides the practical skills students and practitioners need to visualize quantitative data and get the most out of their research findings.Provides hands-on instruction using R and ggplot2Shows how the "tidyverse" of data analysis tools makes working with R easier and more consistentIncludes a library of data sets, code, and functions
Sin Boldly!: Dr. Dave's Guide To Acing The College Paper
David R. Williams - 1994
Jammed with sage advice, genuine encouragement, and surprising examples of how to write and how not to write, this book gives beginning writers and confident students alike an easy-to-follow roadmap for improving one of the most important skills for success. En route to Sin Boldly!-induced, A+ paper bliss, readers encounter such topics as:Choosing a Topic and Telling Your Story ("K.I.S.S.-Keep It Simple, Stupid")Literary Games (featuring "Francobabble for Freshman")Choosing a Voice ("Dissing the Prof")Grammatical Horrors ("A does not equal they")Common Mistakes ("Hopefully and Other Controversies") Fully revised and updated with new examples, quizzes, and tips, Sin Boldly! is not only a comprehensive guide, but also a fantastic, fun read for anyone who wants to write clearly and effectively.
R Graphics Cookbook: Practical Recipes for Visualizing Data
Winston Chang - 2012
Each recipe tackles a specific problem with a solution you can apply to your own project, and includes a discussion of how and why the recipe works.Most of the recipes use the ggplot2 package, a powerful and flexible way to make graphs in R. If you have a basic understanding of the R language, you're ready to get started.Use R's default graphics for quick exploration of dataCreate a variety of bar graphs, line graphs, and scatter plotsSummarize data distributions with histograms, density curves, box plots, and other examplesProvide annotations to help viewers interpret dataControl the overall appearance of graphicsRender data groups alongside each other for easy comparisonUse colors in plotsCreate network graphs, heat maps, and 3D scatter plotsStructure data for graphing
Visualize This: The FlowingData Guide to Design, Visualization, and Statistics
Nathan Yau - 2011
Wouldn't it be wonderful if we could actually visualize data in such a way that we could maximize its potential and tell a story in a clear, concise manner? Thanks to the creative genius of Nathan Yau, we can. With this full-color book, data visualization guru and author Nathan Yau uses step-by-step tutorials to show you how to visualize and tell stories with data. He explains how to gather, parse, and format data and then design high quality graphics that help you explore and present patterns, outliers, and relationships.Presents a unique approach to visualizing and telling stories with data, from a data visualization expert and the creator of flowingdata.com, Nathan Yau Offers step-by-step tutorials and practical design tips for creating statistical graphics, geographical maps, and information design to find meaning in the numbers Details tools that can be used to visualize data-native graphics for the Web, such as ActionScript, Flash libraries, PHP, and JavaScript and tools to design graphics for print, such as R and Illustrator Contains numerous examples and descriptions of patterns and outliers and explains how to show them Visualize This demonstrates how to explain data visually so that you can present your information in a way that is easy to understand and appealing.
Research and Evaluation in Education and Psychology: Integrating Diversity with Quantitative, Qualitative, and Mixed Methods
Donna M. Mertens - 1997
Donna is so sensitive in exploring those issues, a first in a text for that class and a welcome addition.--Nick Eastmond, Utah State UniversityFocused on discussing what is considered to be good research, this text explains quantitative, qualitative, and mixed methods in detail, incorporating the viewpoints of various research paradigms into the descriptions of these methods. Approximately 60% of the content in this Third Edition is new, with lots of fresh examples.Key FeaturesPostpositivist, constructivist, transformative, and pragmatic paradigms discussedConducting research in culturally complex communities emphasized throughoutA step-by-step overview of the entire research process providedNew to this Edition New coverage on how to write a literature review and plan a dissertationNew pedagogy including Extending Your Thinking throughoutThis is a core or supplemental text for research courses in departments of education, psychology, sociology, social work and other human-services disciplines.
Understanding Digital Signal Processing
Richard G. Lyons - 1996
This second edition is appropriate as a supplementary (companion) text for any college-level course covering digital signal processing.
Pattern Classification
David G. Stork - 1973
Now with the second edition, readers will find information on key new topics such as neural networks and statistical pattern recognition, the theory of machine learning, and the theory of invariances. Also included are worked examples, comparisons between different methods, extensive graphics, expanded exercises and computer project topics.An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Excel 2007 VBA Programming for Dummies
John Walkenbach - 1996
Packed with plenty of sample programs, it explains how to work with range objects, control program flow, develop custom dialog boxes, create custom toolbars and menus, and much more.Discover how toGrasp essential programming concepts Use the Visual Basic Editor Navigate the new Excel user interface Communicate with your users Deal with errors and bugs
Reinforcement Learning: An Introduction
Richard S. Sutton - 1998
Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.