Book picks similar to
Advanced Engineering Mathematics by Peter V. O'Neil
technical
engineering
textbook
هندسة
The Art of Doing Science and Engineering: Learning to Learn
Richard Hamming - 1996
By presenting actual experiences and analyzing them as they are described, the author conveys the developmental thought processes employed and shows a style of thinking that leads to successful results is something that can be learned. Along with spectacular successes, the author also conveys how failures contributed to shaping the thought processes. Provides the reader with a style of thinking that will enhance a person's ability to function as a problem-solver of complex technical issues. Consists of a collection of stories about the author's participation in significant discoveries, relating how those discoveries came about and, most importantly, provides analysis about the thought processes and reasoning that took place as the author and his associates progressed through engineering problems.
Student Solutions Manual for Elementary Differential Equations
Earl D. Rainville - 1997
Introducing Python: Modern Computing in Simple Packages
Bill Lubanovic - 2013
In addition to giving a strong foundation in the language itself, Lubanovic shows how to use it for a range of applications in business, science, and the arts, drawing on the rich collection of open source packages developed by Python fans.It's impressive how many commercial and production-critical programs are written now in Python. Developed to be easy to read and maintain, it has proven a boon to anyone who wants applications that are quick to write but robust and able to remain in production for the long haul.This book focuses on the current version of Python, 3.x, while including sidebars about important differences with 2.x for readers who may have to deal with programs in that version.
Fourier Series
Georgi P. Tolstov - 1976
Over 100 problems at ends of chapters. Answers in back of book. 1962 edition.
Linux Kernel Development
Robert Love - 2003
The book details the major subsystems and features of the Linux kernel, including its design, implementation, and interfaces. It covers the Linux kernel with both a practical and theoretical eye, which should appeal to readers with a variety of interests and needs. The author, a core kernel developer, shares valuable knowledge and experience on the 2.6 Linux kernel. Specific topics covered include process management, scheduling, time management and timers, the system call interface, memory addressing, memory management, the page cache, the VFS, kernel synchronization, portability concerns, and debugging techniques. This book covers the most interesting features of the Linux 2.6 kernel, including the CFS scheduler, preemptive kernel, block I/O layer, and I/O schedulers. The third edition of Linux Kernel Development includes new and updated material throughout the book:An all-new chapter on kernel data structuresDetails on interrupt handlers and bottom halvesExtended coverage of virtual memory and memory allocationTips on debugging the Linux kernelIn-depth coverage of kernel synchronization and lockingUseful insight into submitting kernel patches and working with the Linux kernel community
Linear Algebra With Applications
Steven J. Leon - 1980
Each chapter contains integrated worked examples and chapter tests. This edition has the ancillary ATLAST computer exercise guide and new MATLAB and Maple guides.
The Rust Programming Language
Steve Klabnik
This is the undisputed go-to guide to Rust, written by two members of the Rust core team, with feedback and contributions from 42 members of the community. The book assumes that you’ve written code in another programming language but makes no assumptions about which one, meaning the material is accessible and useful to developers from a wide variety of programming backgrounds.Known by the Rust community as "The Book," The Rust Programming Language includes concept chapters, where you’ll learn about a particular aspect of Rust, and project chapters, where you’ll apply what you’ve learned so far to build small programs.The Book opens with a quick hands-on project to introduce the basics then explores key concepts in depth, such as ownership, the type system, error handling, and fearless concurrency. Next come detailed explanations of Rust-oriented perspectives on topics like pattern matching, iterators, and smart pointers, with concrete examples and exercises--taking you from theory to practice.The Rust Programming Language will show you how to: Grasp important concepts unique to Rust like ownership, borrowing, and lifetimes Use Cargo, Rust’s built-in package manager, to build and maintain your code, including downloading and building dependencies Effectively use Rust’s zero-cost abstractions and employ your ownYou’ll learn to develop reliable code that’s speed and memory efficient, while avoiding the infamous and arcane programming pitfalls common at the systems level. When you need to dive down into lower-level control, this guide will show you how without taking on the customary risk of crashes or security holes and without requiring you to learn the fine points of a fickle toolchain.You’ll also learn how to create command line programs, build single- and multithreaded web servers, and much more.The Rust Programming Language fully embraces Rust’s potential to empower its users. This friendly and approachable guide will help you build not only your knowledge of Rust but also your ability to program with confidence in a wider variety of domains.
The Human Factor: Revolutionizing the Way People Live with Technology
Kim J. Vicente - 2003
He investigates every level of human activity - from simple matters such as our hand-eye coordination to complex human systems such as government regulatory agencies, and why businesses would benefit from making consumer goods easier to use. He shows us why we all have a vital stake in reforming the aviation industry, the health industry, and the way we live day-to-day with technology.
Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference
Cameron Davidson-Pilon - 2014
However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice-freeing you to get results using computing power.
Bayesian Methods for Hackers
illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You'll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you've mastered these techniques, you'll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes - Learning the Bayesian "state of mind" and its practical implications - Understanding how computers perform Bayesian inference - Using the PyMC Python library to program Bayesian analyses - Building and debugging models with PyMC - Testing your model's "goodness of fit" - Opening the "black box" of the Markov Chain Monte Carlo algorithm to see how and why it works - Leveraging the power of the "Law of Large Numbers" - Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning - Using loss functions to measure an estimate's weaknesses based on your goals and desired outcomes - Selecting appropriate priors and understanding how their influence changes with dataset size - Overcoming the "exploration versus exploitation" dilemma: deciding when "pretty good" is good enough - Using Bayesian inference to improve A/B testing - Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.
Fuzzy Thinking: The New Science of Fuzzy Logic
Bart Kosko - 1993
An authoritative introduction to "fuzzy logic" brings readers up to speed on the "smart" products and computers that will change all of our lives in the future.
Compilers: Principles, Techniques, and Tools
Alfred V. Aho - 1986
The authors present updated coverage of compilers based on research and techniques that have been developed in the field over the past few years. The book provides a thorough introduction to compiler design and covers topics such as context-free grammars, fine state machines, and syntax-directed translation.
The Model Thinker: What You Need to Know to Make Data Work for You
Scott E. Page - 2018
But as anyone who has ever opened up a spreadsheet packed with seemingly infinite lines of data knows, numbers aren't enough: we need to know how to make those numbers talk. In The Model Thinker, social scientist Scott E. Page shows us the mathematical, statistical, and computational models—from linear regression to random walks and far beyond—that can turn anyone into a genius. At the core of the book is Page's "many-model paradigm," which shows the reader how to apply multiple models to organize the data, leading to wiser choices, more accurate predictions, and more robust designs. The Model Thinker provides a toolkit for business people, students, scientists, pollsters, and bloggers to make them better, clearer thinkers, able to leverage data and information to their advantage.
Calculus for Dummies
Mark Ryan - 2003
Others who have no intention of ever studying the subject have this notion that calculus is impossibly difficult unless you happen to be a direct descendant of Einstein. Well, the good news is that you can master calculus. It's not nearly as tough as its mystique would lead you to think. Much of calculus is really just very advanced algebra, geometry, and trig. It builds upon and is a logical extension of those subjects. If you can do algebra, geometry, and trig, you can do calculus.Calculus For Dummies is intended for three groups of readers:Students taking their first calculus course - If you're enrolled in a calculus course and you find your textbook less than crystal clear, this is the book for you. It covers the most important topics in the first year of calculus: differentiation, integration, and infinite series.Students who need to brush up on their calculus to prepare for other studies - If you've had elementary calculus, but it's been a couple of years and you want to review the concepts to prepare for, say, some graduate program, Calculus For Dummies will give you a thorough, no-nonsense refresher course.Adults of all ages who'd like a good introduction to the subject - Non-student readers will find the book's exposition clear and accessible. Calculus For Dummies takes calculus out of the ivory tower and brings it down to earth. This is a user-friendly math book. Whenever possible, the author explains the calculus concepts by showing you connections between the calculus ideas and easier ideas from algebra and geometry. Then, you'll see how the calculus concepts work in concrete examples. All explanations are in plain English, not math-speak. Calculus For Dummies covers the following topics and more:Real-world examples of calculus The two big ideas of calculus: differentiation and integration Why calculus works Pre-algebra and algebra review Common functions and their graphs Limits and continuity Integration and approximating area Sequences and series Don't buy the misconception. Sure calculus is difficult - but it's manageable, doable. You made it through algebra, geometry, and trigonometry. Well, calculus just picks up where they leave off - it's simply the next step in a logical progression.
Calculus and Analytic Geometry
George B. Thomas Jr. - 1920
It features a visual presentation, designed to encourage learning; revised exercises to ensure clarity, balance and relevance; and clear commentary on the difficult subject of critical multivariable calculus topics.
Mechanics of Materials, SI Edition
James M. Gere - 2002
They are converted to metric units using realistic data to help students grasp what is feasible in engineering practice.