A-Level Physics


Roger Muncaster - 1981
    New 'Consolidation' sections and questions designed to provide a link between GCSE and A-level feature in the text.At the end of each section there are many questions - ideal for consolidation and revision - mainly from past A-level examination papers. Over 15 of these past-paper questions have been added in the Fourth Edition. Answers are included.

Calculus


Dale E. Varberg - 1999
    Covering various the materials needed by students in engineering, science, and mathematics, this calculus text makes effective use of computing technology, graphics, and applications. It presents at least two technology projects in each chapter.

Mathematics for the Million: How to Master the Magic of Numbers


Lancelot Hogben - 1937
    His illuminating explanation is addressed to the person who wants to understand the place of mathematics in modern civilization but who has been intimidated by its supposed difficulty. Mathematics is the language of size, shape, and order—a language Hogben shows one can both master and enjoy.

Data Structures Using C++


D.S. Malik - 2003
    D.S. Malik is ideal for a one-semester course focused on data structures. Clearly written with the student in mind, this text focuses on Data Structures and includes advanced topics in C++ such as Linked Lists and the Standard Template Library (STL). This student-friendly text features abundant Programming Examples and extensive use of visual diagrams to reinforce difficult topics. Students will find Dr. Malik's use of complete programming code and clear display of syntax, explanation, and example easy to read and conducive to learning.

Ruler and Compass: Practical Geometric Constructions


Andrew Sutton - 2009
    Originally marked out by eye and later by use of a stretched cord, in time these forms came to be made with the simple tools of ruler and compass.This small book introduces the origins and basic principles of geometric constructions using these ancient tools, before going on to cover dozens of geometric forms, from practical fundamentals to more challenging constructions.

Numerical Analysis


Richard L. Burden - 1978
    Explaining how, why, and when the techniques can be expected to work, the Seventh Edition places an even greater emphasis on building readers' intuition to help them understand why the techniques presented work in general, and why, in some situations, they fail. Applied problems from diverse areas, such as engineering and physical, computer, and biological sciences, are provided so readers can understand how numerical methods are used in real-life situations. The Seventh Edition has been updated and now addresses the evolving use of technology, incorporating it whenever appropriate.

The Principles of Quantum Mechanics


Paul A.M. Dirac - 1958
    No graduate student of quantum theory should leave it unread"--W.C Schieve, University of Texas

Applied Mathematics: A Very Short Introduction


Alain Goriely - 2018
    While pure mathematics is mostly interested in abstract structures, applied mathematics sits at the interface between this abstract world and the world inwhich we live. This area of mathematics takes its nourishment from society and science and, in turn, provides a unified way to understand problems arising in diverse fields.This Very Short Introduction presents a compact yet comprehensive view of the field of applied mathematics, and explores its relationships with (pure) mathematics, science, and engineering. Explaining the nature of applied mathematics, Alain Goriely discusses its early achievements in physics andengineering, and its development as a separate field after World War II. Using historical examples, current applications, and challenges, Goriely illustrates the particular role that mathematics plays in the modern sciences today and its far-reaching potential.ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, andenthusiasm to make interesting and challenging topics highly readable.

Problems Plus In Iit Mathematics


A. Das Gupta
    This is type of problems asked at the JEE (IIT). The purpose of this book is to show students how to handle such problems and give them sufficient practice in solving problems of this type, thus building their confidence. The main features of this book are:Each chapter begins with a summary of facts, formulate and working techniques. Trick, tips and techniques have been clearly marked with the icon.A large number of problems have been solved and explained in each chapter.The exercises contain short-answer, long-answer and objective type questions.Multiple-choice questions in which more than one option may be correct have also been given.Time-bound tests at the end of each chapter will help students practise answering questions in a given time.The book also includes integrated tests, bases on all the chapters.A chapter containing miscellaneous problems has been given at the end of the book. This will help students gain confidence in solving problems without prior knowledge of the chapter(s) to which the problems belong.Table of ContentsAlgebraProgressions, Related Inequalities and SeriesDeterminants and Cramer's RuleEquations, Inequations and ExpressionsComplex NumbersPermutation and CombinationBinomial Theorem for Positive Integral IndexPrinciple of Mathematical Induction (PMI)Infinite SeriesMatricesTrigonometryCircular Functions, IdentitiesSolution of EquationsInverse Circular FunctionsTrigonometrical Inequalities and InequationsLogarithmProperties of TriangleHeights and DistancesCoordinate GeometryCoordinates and Straight LinesPairs of Straight Lines and Transformation of AxesCirclesParabolaEllipse and HyperbolaCalculusFunctionDifferentiationLimit, Indeterminate FormContinuity, Differentiability and Graph of FunctionApplication of dy/dxMaxima and MinimaMonotonic Function and Lagrange's TheoremIndefinite In

An Introduction to Thermal Physics


Daniel V. Schroeder - 1999
    Part I introduces concepts of thermodynamics and statistical mechanics from a unified view. Parts II and III explore further applications of classical thermodynamics and statistical mechanics. Throughout, the emphasis is on real-world applications.

King of Infinite Space: Donald Coxeter, the Man Who Saved Geometry


Siobhan Roberts - 2006
    Yet geometry is so much more than shapes and numbers; indeed, it governs much of our lives—from architecture and microchips to car design, animated movies, the molecules of food, even our own body chemistry. And as Siobhan Roberts elegantly conveys in The King of Infinite Space, there can be no better guide to the majesty of geometry than Donald Coxeter, perhaps the greatest geometer of the twentieth century.Many of the greatest names in intellectual history—Pythagoras, Plato, Archimedes, Euclid— were geometers, and their creativity and achievements illuminate those of Coxeter, revealing geometry to be a living, ever-evolving endeavor, an intellectual adventure that has always been a building block of civilization. Coxeter's special contributions—his famed Coxeter groups and Coxeter diagrams—have been called by other mathematicians "tools as essential as numbers themselves," but his greatest achievement was to almost single-handedly preserve the tradition of classical geometry when it was under attack in a mathematical era that valued all things austere and rational.Coxeter also inspired many outside the field of mathematics. Artist M. C. Escher credited Coxeter with triggering his legendary Circle Limit patterns, while futurist/inventor Buckminster Fuller acknowledged that his famed geodesic dome owed much to Coxeter's vision. The King of Infinite Space is an elegant portal into the fascinating, arcane world of geometry.

The Art of the Infinite: The Pleasures of Mathematics


Robert M. Kaplan - 1980
    The Times called it elegant, discursive, and littered with quotes and allusions from Aquinas via Gershwin to Woolf and The Philadelphia Inquirer praised it as absolutely scintillating. In this delightful new book, Robert Kaplan, writing together with his wife Ellen Kaplan, once again takes us on a witty, literate, and accessible tour of the world of mathematics. Where The Nothing That Is looked at math through the lens of zero, The Art of the Infinite takes infinity, in its countless guises, as a touchstone for understanding mathematical thinking. Tracing a path from Pythagoras, whose great Theorem led inexorably to a discovery that his followers tried in vain to keep secret (the existence of irrational numbers); through Descartes and Leibniz; to the brilliant, haunted Georg Cantor, who proved that infinity can come in different sizes, the Kaplans show how the attempt to grasp the ungraspable embodies the essence of mathematics. The Kaplans guide us through the Republic of Numbers, where we meet both its upstanding citizens and more shadowy dwellers; and we travel across the plane of geometry into the unlikely realm where parallel lines meet. Along the way, deft character studies of great mathematicians (and equally colorful lesser ones) illustrate the opposed yet intertwined modes of mathematical thinking: the intutionist notion that we discover mathematical truth as it exists, and the formalist belief that math is true because we invent consistent rules for it. Less than All, wrote William Blake, cannot satisfy Man. The Art of the Infinite shows us some of the ways that Man has grappled with All, and reveals mathematics as one of the most exhilarating expressions of the human imagination.

Essential Poker Math, Expanded Edition: Fundamental No Limit Hold'em Mathematics You Need To Know


Alton Hardin - 2016
    This book will teach you the basic poker mathematics you need to know in order to improve and outplay your opponents, and focuses on foundational poker mathematics - the ones you’ll use day in and day out at the poker table; and probably the ones your opponents neglect.

The Man Who Counted Infinity and Other Short Stories from Science, History and Philosophy


Sašo Dolenc - 2012
    The objective here is to explain science in a simple, attractive and fun form that is open to all.The first axiom of this approach was set out as follows: “We believe in the magic of science. We hope to show you that sci-ence is not a secret art, accessible only to a dedicated few. It involves learning about nature and society, and aspects of our existence which affect us all, and which we should all therefore have the chance to understand. We shall interpret science for those who might not speak its language fluently, but want to understand its meaning. We don’t teach, we just tell stories about the beginnings of science, the natural phenomena and the underlying principles through which they occur, and the lives of the people who discovered them.”The aim of the writings collected in this series is to present some key scientific events, ideas and personalities in the form of short stories that are easy and fun to read. Scientific and philo-sophical concepts are explained in a way that anyone may under-stand. Each story may be read separately, but at the same time they all band together to form a wide-ranging introduction to the history of science and areas of contemporary scientific research, as well as some of the recurring problems science has encountered in history and the philosophical dilemmas it raises today.Review“If I were the only survivor on a remote island and all I had with me were this book, a Swiss army knife and a bottle, I would throw the bottle into the sea with the note: ‘Don’t worry, I have everything I need.’”— Ciril Horjak, alias Dr. Horowitz, a comic artist“The writing is understandable, but never simplistic. Instructive, but never patronizing. Straightforward, but never trivial. In-depth, but never too intense.”— Ali Žerdin, editor at Delo, the main Slovenian newspaper“Does science think? Heidegger once answered this question with a decisive No. The writings on modern science skillfully penned by Sašo Dolenc, these small stories about big stories, quickly convince us that the contrary is true. Not only does science think in hundreds of unexpected ways, its intellectual challenges and insights are an inexhaustible source of inspiration and entertainment. The clarity of thought and the lucidity of its style make this book accessible to anyone … in the finest tradition of popularizing science, its achievements, dilemmas and predicaments.”— Mladen Dolar, philosopher and author of A Voice and Nothing More“Sašo Dolenc is undoubtedly one of our most successful authors in the field of popular science, possessing the ability to explain complex scientific achievements to a broader audience in a clear and captivating way while remaining precise and scientific. His collection of articles is of particular importance because it encompasses all areas of modern science in an unassuming, almost light-hearted manner.”— Boštjan Žekš, physicist and former president of the Slovenian Academy of Sciences and Arts

The Particles of the Universe


Jeff Yee - 2012
    Everything around us, including matter, is energy. A deep look into the mysteries of the subatomic world – the particles that make up the atom – provides answers to basic questions about how the universe works. To solve the future of mankind’s energy needs we need to understand the basic building blocks of the universe, including the atom and its parts. By exploring the subatomic world we’ll find more answers to our questions about time, forces like gravity and the matter that surrounds us. More importantly, we’ll find new ways to tap into the energy that exists around us to power our growing needs. In a new branch of particle physics, where tiny particles are thought of as energy waves, we find new answers that may help us in our quest to find alternative energy sources.