Machine Learning: A Probabilistic Perspective


Kevin P. Murphy - 2012
    Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

A New Kind of Science


Stephen Wolfram - 1997
    Wolfram lets the world see his work in A New Kind of Science, a gorgeous, 1,280-page tome more than a decade in the making. With patience, insight, and self-confidence to spare, Wolfram outlines a fundamental new way of modeling complex systems. On the frontier of complexity science since he was a boy, Wolfram is a champion of cellular automata--256 "programs" governed by simple nonmathematical rules. He points out that even the most complex equations fail to accurately model biological systems, but the simplest cellular automata can produce results straight out of nature--tree branches, stream eddies, and leopard spots, for instance. The graphics in A New Kind of Science show striking resemblance to the patterns we see in nature every day. Wolfram wrote the book in a distinct style meant to make it easy to read, even for nontechies; a basic familiarity with logic is helpful but not essential. Readers will find themselves swept away by the elegant simplicity of Wolfram's ideas and the accidental artistry of the cellular automaton models. Whether or not Wolfram's revolution ultimately gives us the keys to the universe, his new science is absolutely awe-inspiring. --Therese Littleton

Game Project Completed: How Successful Indie Game Developers Finish Their Projects


Thomas Schwarzl - 2014
    They teach you how to make games. This book does not show you how to make games. It shows you how to take your game project to the finish line. Many game projects never make it beyond the alpha state.Game Development Success Is All About The Inner Game.Being a successful game developer does not (just) mean being a great programmer, a smart game designer or a gifted artist. It means dominating the inner game of game making. This separates the pros from the wannabes. It's the knowledge of how to stay focused, motivated and efficient during your game projects. It's the skillset of keeping things simple and avoiding misleading dreams of the next overnight success. Finally it's about thinking as a salesperson, not just as a designer, programmer or artist.

Combinatorial Optimization: Algorithms and Complexity


Christos H. Papadimitriou - 1998
    All chapters are supplemented by thought-provoking problems. A useful work for graduate-level students with backgrounds in computer science, operations research, and electrical engineering. "Mathematicians wishing a self-contained introduction need look no further." — American Mathematical Monthly.

Are You Smart Enough to Work at Google?


William Poundstone - 2012
    The blades start moving in 60 seconds. What do you do? If you want to work at Google, or any of America's best companies, you need to have an answer to this and other puzzling questions. Are You Smart Enough to Work at Google? guides readers through the surprising solutions to dozens of the most challenging interview questions. The book covers the importance of creative thinking, ways to get a leg up on the competition, what your Facebook page says about you, and much more. Are You Smart Enough to Work at Google? is a must-read for anyone who wants to succeed in today's job market.

Llewellyn's 2013 Witches' Datebook


Llewellyn Publications - 2012
    New for this year is Elizabeth Barrette's insightful introduction to thirteen magical stones that includes spells and rituals. You'll also find fun, fresh ways to celebrate the sacred seasons and enhance your practice-inspiring Sabbat musings (Ellen Dugan), tasty Sabbat recipes (Susan Pesznecker), and Moon rituals (Ember Grant). For spellwork, there's astrological information and daily colours. Also included are in-depth articles on good energy (Tess Whitehurst), cauldron magic (James Kambos), rainy day magic (Melanie Marquis), and many more.

The Definitive ANTLR 4 Reference


Terence Parr - 2012
    Whether it's a data format like JSON, a network protocol like SMTP, a server configuration file for Apache, a PostScript/PDF file, or a simple spreadsheet macro language--ANTLR v4 and this book will demystify the process. ANTLR v4 has been rewritten from scratch to make it easier than ever to build parsers and the language applications built on top. This completely rewritten new edition of the bestselling Definitive ANTLR Reference shows you how to take advantage of these new features. Build your own languages with ANTLR v4, using ANTLR's new advanced parsing technology. In this book, you'll learn how ANTLR automatically builds a data structure representing the input (parse tree) and generates code that can walk the tree (visitor). You can use that combination to implement data readers, language interpreters, and translators. You'll start by learning how to identify grammar patterns in language reference manuals and then slowly start building increasingly complex grammars. Next, you'll build applications based upon those grammars by walking the automatically generated parse trees. Then you'll tackle some nasty language problems by parsing files containing more than one language (such as XML, Java, and Javadoc). You'll also see how to take absolute control over parsing by embedding Java actions into the grammar. You'll learn directly from well-known parsing expert Terence Parr, the ANTLR creator and project lead. You'll master ANTLR grammar construction and learn how to build language tools using the built-in parse tree visitor mechanism. The book teaches using real-world examples and shows you how to use ANTLR to build such things as a data file reader, a JSON to XML translator, an R parser, and a Java class->interface extractor. This book is your ticket to becoming a parsing guru!What You Need: ANTLR 4.0 and above. Java development tools. Ant build system optional (needed for building ANTLR from source)

R for Data Science: Import, Tidy, Transform, Visualize, and Model Data


Hadley Wickham - 2016
    This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You’ll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you’ve learned along the way. You’ll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

Practical Algebra: A Self-Teaching Guide


Peter H. Selby - 1974
    Practical Algebra is an easy andfun-to-use workout program that quickly puts you in command of allthe basic concepts and tools of algebra. With the aid of practical, real-life examples and applications, you'll learn: * The basic approach and application of algebra to problemsolving * The number system (in a much broader way than you have known itfrom arithmetic) * Monomials and polynomials; factoring algebraic expressions; howto handle algebraic fractions; exponents, roots, and radicals;linear and fractional equations * Functions and graphs; quadratic equations; inequalities; ratio, proportion, and variation; how to solve word problems, andmore Authors Peter Selby and Steve Slavin emphasize practical algebrathroughout by providing you with techniques for solving problems ina wide range of disciplines--from engineering, biology, chemistry, and the physical sciences, to psychology and even sociology andbusiness administration. Step by step, Practical Algebra shows youhow to solve algebraic problems in each of these areas, then allowsyou to tackle similar problems on your own, at your own pace.Self-tests are provided at the end of each chapter so you canmeasure your mastery.

Erlang and OTP in Action


Martin Logan - 2010
    Multi-core processors and the increasing demand for maximum performance and scalability in mission-critical applications have renewed interest in functional languages like Erlang that are designed to handle concurrent programming. Erlang, and the OTP platform, make it possible to deliver more robust applications that satisfy rigorous uptime and performance requirements.Erlang and OTP in Action teaches you to apply Erlang's message passing model for concurrent programming--a completely different way of tackling the problem of parallel programming from the more common multi-threaded approach. This book walks you through the practical considerations and steps of building systems in Erlang and integrating them with real-world C/C++, Java, and .NET applications. Unlike other books on the market, Erlang and OTP in Action offers a comprehensive view of how concurrency relates to SOA and web technologies.This hands-on guide is perfect for readers just learning Erlang or for those who want to apply their theoretical knowledge of this powerful language. You'll delve into the Erlang language and OTP runtime by building several progressively more interesting real-world distributed applications. Once you are competent in the fundamentals of Erlang, the book takes you on a deep dive into the process of designing complex software systems in Erlang. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.

The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life Plus the Secrets of Enigma


Alan Turing - 2004
    In 1935, aged 22, he developed the mathematical theory upon which all subsequent stored-program digital computers are modeled.At the outbreak of hostilities with Germany in September 1939, he joined the Government Codebreaking team at Bletchley Park, Buckinghamshire and played a crucial role in deciphering Engima, the code used by the German armed forces to protect their radio communications. Turing's work on the versionof Enigma used by the German navy was vital to the battle for supremacy in the North Atlantic. He also contributed to the attack on the cyphers known as Fish, which were used by the German High Command for the encryption of signals during the latter part of the war. His contribution helped toshorten the war in Europe by an estimated two years.After the war, his theoretical work led to the development of Britain's first computers at the National Physical Laboratory and the Royal Society Computing Machine Laboratory at Manchester University.Turing was also a founding father of modern cognitive science, theorizing that the cortex at birth is an unorganized machine which through training becomes organized into a universal machine or something like it. He went on to develop the use of computers to model biological growth, launchingthe discipline now referred to as Artificial Life.The papers in this book are the key works for understanding Turing's phenomenal contribution across all these fields. The collection includes Turing's declassified wartime Treatise on the Enigma; letters from Turing to Churchill and to codebreakers; lectures, papers, and broadcasts which opened upthe concept of AI and its implications; and the paper which formed the genesis of the investigation of Artifical Life.

Pattern Recognition and Machine Learning


Christopher M. Bishop - 2006
    However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Understanding Digital Signal Processing


Richard G. Lyons - 1996
    This second edition is appropriate as a supplementary (companion) text for any college-level course covering digital signal processing.

Downloads From the Nine: Awaken as you read


Matias Flury - 2014
    The reading itself plunges the reader in to an ocean of crystalline light. Read and awaken.

Reinforcement Learning: An Introduction


Richard S. Sutton - 1998
    Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.