The Universal History of Numbers: From Prehistory to the Invention of the Computer


Georges Ifrah - 1981
    A riveting history of counting and calculating, from the time of the cave dwellers to the twentieth century, this fascinating volume brings numbers to thrilling life, explaining their development in human terms, the intriguing situations that made them necessary, and the brilliant achievements in human thought that they made possible. It takes us through the numbers story from Europe to China, via ancient Greece and Rome, Mesopotamia, Latin America, India, and the Arabic countries. Exploring the many ways civilizations developed and changed their mathematical systems, Ifrah imparts a unique insight into the nature of human thought–and into how our understanding of numbers and the ways they shape our lives have changed and grown over thousands of years.

The Puzzler's Dilemma: From the Lighthouse of Alexandria to Monty Hall, a Fresh Look at Classic Conundrums of Logic, Mathematics, and Life


Derrick Niederman - 2012
    Among the old chestnuts he cracks wide open are the following classics: Knights and knaves The monk and the mountain The dominoes and the chessboard The unexpected hanging The Tower of HanoiUsing real-world analogies, infectious humor, and a fresh approach, this deceptively simple volume will challenge, amuse, enlighten, and surprise even the most experienced puzzle solver.

Mathematical Analysis


S.C. Malik - 1992
    This book discusses real sequences and series, continuity, functions of several variables, elementary and implicit functions, Riemann and Riemann-Stieltjes integrals, and Lebesgue integrals.

Introduction to the Theory of Computation


Michael Sipser - 1996
    Sipser's candid, crystal-clear style allows students at every level to understand and enjoy this field. His innovative "proof idea" sections explain profound concepts in plain English. The new edition incorporates many improvements students and professors have suggested over the years, and offers updated, classroom-tested problem sets at the end of each chapter.

How to Solve It: Modern Heuristics


Zbigniew Michalewicz - 2004
    Publilius Syrus, Moral Sayings We've been very fortunate to receive fantastic feedback from our readers during the last four years, since the first edition of How to Solve It: Modern Heuristics was published in 1999. It's heartening to know that so many people appreciated the book and, even more importantly, were using the book to help them solve their problems. One professor, who published a review of the book, said that his students had given the best course reviews he'd seen in 15 years when using our text. There can be hardly any better praise, except to add that one of the book reviews published in a SIAM journal received the best review award as well. We greatly appreciate your kind words and personal comments that you sent, including the few cases where you found some typographical or other errors. Thank you all for this wonderful support.

Discovering Statistics Using SPSS (Introducing Statistical Methods)


Andy Field - 2000
    What's new in the Second Edition? 1. Fully compliant with the latest version of SPSS version 12 2. More coverage of advanced statistics including completely new coverage of non-parametric statistics. The book is 50 per cent longer than the First Edition. 3. Each section of each chapter now has a notation - 1,2 or 3 - referring to the intended level of study. This helps students navigate their way through the book and makes it user-friendly for students of ALL levels. 4. Has a 'how to use this book' section at the start of the text. 5. Characters in each chapter have defined roles - summarizing key points, to pose questions etc 6. Each chapter now has several examples for students to work through. Answers provided on the enclosed CD-ROM

All of Statistics: A Concise Course in Statistical Inference


Larry Wasserman - 2003
    But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like nonparametric curve estimation, bootstrapping, and clas- sification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analyzing data. For some time, statistics research was con- ducted in statistics departments while data mining and machine learning re- search was conducted in computer science departments. Statisticians thought that computer scientists were reinventing the wheel. Computer scientists thought that statistical theory didn't apply to their problems. Things are changing. Statisticians now recognize that computer scientists are making novel contributions while computer scientists now recognize the generality of statistical theory and methodology. Clever data mining algo- rithms are more scalable than statisticians ever thought possible. Formal sta- tistical theory is more pervasive than computer scientists had realized.

Solid State Physics


Neil W. Ashcroft - 1976
    This book provides an introduction to the field of solid state physics for undergraduate students in physics, chemistry, engineering, and materials science.

Keeping Up with the Quants: Your Guide to Understanding and Using Analytics


Thomas H. Davenport - 2013
    No matter your interests (sports, movies, politics), your industry (finance, marketing, technology, manufacturing), or the type of organization you work for (big company, nonprofit, small start-up)—your world is awash with data.As a successful manager today, you must be able to make sense of all this information. You need to be conversant with analytical terminology and methods and able to work with quantitative information. This book promises to become your �quantitative literacy" guide—helping you develop the analytical skills you need right now in order to summarize data, find the meaning in it, and extract its value.In Keeping Up with the Quants, authors, professors, and analytics experts Thomas Davenport and Jinho Kim offer practical tools to improve your understanding of data analytics and enhance your thinking and decision making. You’ll gain crucial skills, including:� How to formulate a hypothesis� How to gather and analyze relevant data� How to interpret and communicate analytical results� How to develop habits of quantitative thinking� How to deal effectively with the �quants” in your organizationBig data and the analytics based on it promise to change virtually every industry and business function over the next decade. If you don’t have a business degree or if you aren’t comfortable with statistics and quantitative methods, this book is for you. Keeping Up with the Quants will give you the skills you need to master this new challenge—and gain a significant competitive edge.

Learning to Love Math: Teaching Strategies That Change Student Attitudes and Get Results


Judy Willis - 2010
    Judy Willis responds with an emphatic yes in this informative guide to getting better results in math class. Tapping into abundant research on how the brain works, Willis presents a practical approach for how we can improve academic results by demonstrating certain behaviors and teaching students in a way that minimizes negativity.With a straightforward and accessible style, Willis shares the knowledge and experience she has gained through her dual careers as a math teacher and a neurologist. In addition to learning basic brain anatomy and function, readers will learn how to* Improve deep-seated negative attitudes toward math.* Plan lessons with the goal of achievable challenge in mind.* Reduce mistake anxiety with techniques such as errorless math and estimation.* Teach to different individual learning strengths and skill levels.* Spark motivation.* Relate math to students' personal interests and goals.* Support students in setting short-term and long-term goals.* Convince students that they can change their intelligence.With dozens of strategies teachers can use right now, Learning to Love Math puts the power of research directly into the hands of educators. A Brain Owner's Manual, which dives deeper into the structure and function of the brain, is also included--providing a clear explanation of how memories are formed and how skills are learned. With informed teachers guiding them, students will discover that they can build a better brain . . . and learn to love math!

The Number Sense: How the Mind Creates Mathematics


Stanislas Dehaene - 1996
    Describing experiments that show that human infants have a rudimentary number sense, Stanislas Dehaene suggests that this sense is as basic as our perception of color, and that it is wired into the brain. Dehaene shows that it was the invention of symbolic systems of numerals that started us on the climb to higher mathematics. A fascinating look at the crossroads where numbers and neurons intersect, The Number Sense offers an intriguing tour of how the structure of the brain shapes our mathematical abilities, and how our mathematics opens up a window on the human mind.

Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being


George Lakoff - 2000
    Abstract ideas, for the most part, arise via conceptual metaphor-metaphorical ideas projecting from the way we function in the everyday physical world. Where Mathematics Comes From argues that conceptual metaphor plays a central role in mathematical ideas within the cognitive unconscious-from arithmetic and algebra to sets and logic to infinity in all of its forms.

Cybernetics: or the Control and Communication in the Animal and the Machine


Norbert Wiener - 1948
    It is a ‘ must’ book for those in every branch of science . . . in addition, economists, politicians, statesmen, and businessmen cannot afford to overlook cybernetics and its tremendous, even terrifying implications. "It is a beautifully written book, lucid, direct, and despite its complexity, as readable by the layman as the trained scientist." -- John B. Thurston, "The Saturday Review of Literature" Acclaimed one of the "seminal books . . . comparable in ultimate importance to . . . Galileo or Malthus or Rousseau or Mill," "Cybernetics" was judged by twenty-seven historians, economists, educators, and philosophers to be one of those books published during the "past four decades", which may have a substantial impact on public thought and action in the years ahead." -- Saturday Review

Convex Optimization


Stephen Boyd - 2004
    A comprehensive introduction to the subject, this book shows in detail how such problems can be solved numerically with great efficiency. The focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. The text contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance, and economics.

LATEX: A Document Preparation System: User's Guide and Reference Manual


Leslie Lamport - 1985
    The new edition features additional styles and functions, improved font handling, and enhanced graphics capabilities. Other parts of the book have been revised to reflect user comments and suggestions. Selected sections have been rewritten to explain challenging concepts or functions, and the descriptions of both MakeIndex and BibTEX have been updated. New LATEX users will want to start with this book, and current users, particularly as they upgrade to the LATEX2e software, will be eager to obtain the most up-to-date version of its associated manual. Features Revised version of the authoritative user's guide and reference manual for the LATEX computer typesetting system. Features the new standard software release - LATEX2e. Sections rewritten to explain difficult concepts or functions.