The Unreasonable Effectiveness of Mathematics in the Natural Sciences


Eugene Paul Wigner - 1959
    In the paper, Wigner observed that the mathematical structure of a physical theory often points the way to further advances in that theory and even to empirical predictions.

Naked Statistics: Stripping the Dread from the Data


Charles Wheelan - 2012
    How can we catch schools that cheat on standardized tests? How does Netflix know which movies you’ll like? What is causing the rising incidence of autism? As best-selling author Charles Wheelan shows us in Naked Statistics, the right data and a few well-chosen statistical tools can help us answer these questions and more.For those who slept through Stats 101, this book is a lifesaver. Wheelan strips away the arcane and technical details and focuses on the underlying intuition that drives statistical analysis. He clarifies key concepts such as inference, correlation, and regression analysis, reveals how biased or careless parties can manipulate or misrepresent data, and shows us how brilliant and creative researchers are exploiting the valuable data from natural experiments to tackle thorny questions.And in Wheelan’s trademark style, there’s not a dull page in sight. You’ll encounter clever Schlitz Beer marketers leveraging basic probability, an International Sausage Festival illuminating the tenets of the central limit theorem, and a head-scratching choice from the famous game show Let’s Make a Deal—and you’ll come away with insights each time. With the wit, accessibility, and sheer fun that turned Naked Economics into a bestseller, Wheelan defies the odds yet again by bringing another essential, formerly unglamorous discipline to life.

Probability And Statistics For Engineers And Scientists


Ronald E. Walpole - 1978
     Offers extensively updated coverage, new problem sets, and chapter-ending material to enhance the book’s relevance to today’s engineers and scientists. Includes new problem sets demonstrating updated applications to engineering as well as biological, physical, and computer science. Emphasizes key ideas as well as the risks and hazards associated with practical application of the material. Includes new material on topics including: difference between discrete and continuous measurements; binary data; quartiles; importance of experimental design; “dummy” variables; rules for expectations and variances of linear functions; Poisson distribution; Weibull and lognormal distributions; central limit theorem, and data plotting. Introduces Bayesian statistics, including its applications to many fields. For those interested in learning more about probability and statistics.

How to Build a Brain and 34 Other Really Interesting Uses of Maths


Richard Elwes - 2010
    You'll find out how to unknot your DNA, how to count like a supercomputer and how to become famous for solving mathematics' most challenging problem.

A Most Incomprehensible Thing: Notes Towards a Very Gentle Introduction to the Mathematics of Relativity


Peter Collier - 2012
    This user-friendly self-study guide is aimed at the general reader who is motivated to tackle that not insignificant challenge. The book is written using straightforward and accessible language, with clear derivations and explanations as well as numerous fully solved problems. For those with minimal mathematical background, the first chapter provides a crash course in foundation mathematics. The reader is then taken gently by the hand and guided through a wide range of fundamental topics, including Newtonian mechanics; the Lorentz transformations; tensor calculus; the Einstein field equations; the Schwarzschild solution (which gives a good approximation of the spacetime of our Solar System); simple black holes and relativistic cosmology. Following the historic 2015 LIGO (Laser Interferometer Gravitational-Wave Observatory) detection, there is now an additional chapter on gravitational waves, ripples in the fabric of spacetime that potentially provide a revolutionary new way to study the universe. Special relativity helps explain a huge range of non-gravitational physical phenomena and has some strangely counter-intuitive consequences. These include time dilation, length contraction, the relativity of simultaneity, mass-energy equivalence and an absolute speed limit. General relativity, the leading theory of gravity, is at the heart of our understanding of cosmology and black holes.Understand even the basics of Einstein's amazing theory and the world will never seem the same again. ContentsPrefaceIntroduction1 Foundation mathematics2 Newtonian mechanics3 Special relativity4 Introducing the manifold5 Scalars, vectors, one-forms and tensors6 More on curvature7 General relativity8 The Newtonian limit9 The Schwarzschild metric10 Schwarzschild black holes11 Cosmology12 Gravitational wavesAppendix: The Riemann curvature tensorBibliographyAcknowledgementsJanuary 2019. This third edition has been revised to make the material even more accessible to the enthusiastic general reader who seeks to understand the mathematics of relativity.

Invertebrate Zoology


Robert D. Barnes - 1963
    This thorough revision provides a survey by groups, emphasizing adaptive morphology and physiology, while covering anatomical ground plans and basic developmental patterns. New co-author Richard Fox brings to the revision his expertise as an ecologist, offering a good balance to Ruppert's background as a functional morphologist. Rich illustrations and extensive citations make the book extremely valuable as a teaching tool and reference source.

The Emergence of Probability: A Philosophical Study of Early Ideas about Probability, Induction and Statistical Inference


Ian Hacking - 1975
    Ian Hacking here presents a philosophical critique of early ideas about probability, induction and statistical inference and the growth of this new family of ideas in the fifteenth, sixteenth and seventeenth centuries. The contemporary debate centres round such figures as Pascal, Leibniz and Jacques Bernoulli. What brought about the change in ideas? The author invokes in his explanation a wider intellectual framework involving the growth of science, economics and the theology of the period.

Design and Analysis of Experiments


Douglas C. Montgomery - 1976
     Douglas Montgomery arms readers with the most effective approach for learning how to design, conduct, and analyze experiments that optimize performance in products and processes. He shows how to use statistically designed experiments to obtain information for characterization and optimization of systems, improve manufacturing processes, and design and develop new processes and products. You will also learn how to evaluate material alternatives in product design, improve the field performance, reliability, and manufacturing aspects of products, and conduct experiments effectively and efficiently. Discover how to improve the quality and efficiency of working systems with this highly-acclaimed book. This 6th Edition: Places a strong focus on the use of the computer, providing output from two software products: Minitab and DesignExpert. Presents timely, new examples as well as expanded coverage on adding runs to a fractional factorial to de-alias effects. Includes detailed discussions on how computers are currently used in the analysis and design of experiments. Offers new material on a number of important topics, including follow-up experimentation and split-plot design. Focuses even more sharply on factorial and fractional factorial design.

Mind Tools: The Five Levels of Mathematical Reality


Rudy Rucker - 1987
    Reveals mathematics' great power as an alternative language for understanding things and explores such concepts as logic as a computing tool, digital versus analog processes and communication as information transmission.

Mathematics for the Million: How to Master the Magic of Numbers


Lancelot Hogben - 1937
    His illuminating explanation is addressed to the person who wants to understand the place of mathematics in modern civilization but who has been intimidated by its supposed difficulty. Mathematics is the language of size, shape, and order—a language Hogben shows one can both master and enjoy.

Bayesian Reasoning and Machine Learning


David Barber - 2012
    They are established tools in a wide range of industrial applications, including search engines, DNA sequencing, stock market analysis, and robot locomotion, and their use is spreading rapidly. People who know the methods have their choice of rewarding jobs. This hands-on text opens these opportunities to computer science students with modest mathematical backgrounds. It is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models. Students learn more than a menu of techniques, they develop analytical and problem-solving skills that equip them for the real world. Numerous examples and exercises, both computer based and theoretical, are included in every chapter. Resources for students and instructors, including a MATLAB toolbox, are available online.

The Cartoon Introduction to Statistics


Grady Klein - 2013
    Employing an irresistible cast of dragon-riding Vikings, lizard-throwing giants, and feuding aliens, the renowned illustrator Grady Klein and the award-winning statistician Alan Dabney teach you how to collect reliable data, make confident statements based on limited information, and judge the usefulness of polls and the other numbers that you're bombarded with every day. If you want to go beyond the basics, they've created the ultimate resource: "The Math Cave," where they reveal the more advanced formulas and concepts.Timely, authoritative, and hilarious, The Cartoon Introduction to Statistics is an essential guide for anyone who wants to better navigate our data-driven world.

How to Prove It: A Structured Approach


Daniel J. Velleman - 1994
    The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. To help students construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. Previous Edition Hb (1994) 0-521-44116-1 Previous Edition Pb (1994) 0-521-44663-5

The Art of the Infinite: The Pleasures of Mathematics


Robert M. Kaplan - 1980
    The Times called it elegant, discursive, and littered with quotes and allusions from Aquinas via Gershwin to Woolf and The Philadelphia Inquirer praised it as absolutely scintillating. In this delightful new book, Robert Kaplan, writing together with his wife Ellen Kaplan, once again takes us on a witty, literate, and accessible tour of the world of mathematics. Where The Nothing That Is looked at math through the lens of zero, The Art of the Infinite takes infinity, in its countless guises, as a touchstone for understanding mathematical thinking. Tracing a path from Pythagoras, whose great Theorem led inexorably to a discovery that his followers tried in vain to keep secret (the existence of irrational numbers); through Descartes and Leibniz; to the brilliant, haunted Georg Cantor, who proved that infinity can come in different sizes, the Kaplans show how the attempt to grasp the ungraspable embodies the essence of mathematics. The Kaplans guide us through the Republic of Numbers, where we meet both its upstanding citizens and more shadowy dwellers; and we travel across the plane of geometry into the unlikely realm where parallel lines meet. Along the way, deft character studies of great mathematicians (and equally colorful lesser ones) illustrate the opposed yet intertwined modes of mathematical thinking: the intutionist notion that we discover mathematical truth as it exists, and the formalist belief that math is true because we invent consistent rules for it. Less than All, wrote William Blake, cannot satisfy Man. The Art of the Infinite shows us some of the ways that Man has grappled with All, and reveals mathematics as one of the most exhilarating expressions of the human imagination.

Fourier Series


Georgi P. Tolstov - 1976
    Over 100 problems at ends of chapters. Answers in back of book. 1962 edition.