Book picks similar to
A Comprehensive Introduction to Differential Geometry, Volume 4 by Michael Spivak
mathematics
math
differential-geometry
maths
Introduction to Mathematical Philosophy
Bertrand Russell - 1918
In it, Russell offers a nontechnical, undogmatic account of his philosophical criticism as it relates to arithmetic and logic. Rather than an exhaustive treatment, however, the influential philosopher and mathematician focuses on certain issues of mathematical logic that, to his mind, invalidated much traditional and contemporary philosophy.In dealing with such topics as number, order, relations, limits and continuity, propositional functions, descriptions, and classes, Russell writes in a clear, accessible manner, requiring neither a knowledge of mathematics nor an aptitude for mathematical symbolism. The result is a thought-provoking excursion into the fascinating realm where mathematics and philosophy meet — a philosophical classic that will be welcomed by any thinking person interested in this crucial area of modern thought.
Algebraic Topology
Allen Hatcher - 2001
This introductory text is suitable for use in a course on the subject or for self-study, featuring broad coverage and a readable exposition, with many examples and exercises. The four main chapters present the basics: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature is the inclusion of many optional topics not usually part of a first course due to time constraints: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and Steenrod squares and powers.
Elementary Number Theory
David M. Burton - 1976
It reveals the attraction that has drawn leading mathematicians and amateurs alike to number theory over the course of history.
Guesstimation: Solving the World's Problems on the Back of a Cocktail Napkin
Lawrence Weinstein - 2008
More and more leading businesses today use estimation questions in interviews to test applicants' abilities to think on their feet. Guesstimation enables anyone with basic math and science skills to estimate virtually anything--quickly--using plausible assumptions and elementary arithmetic.Lawrence Weinstein and John Adam present an eclectic array of estimation problems that range from devilishly simple to quite sophisticated and from serious real-world concerns to downright silly ones. How long would it take a running faucet to fill the inverted dome of the Capitol? What is the total length of all the pickles consumed in the US in one year? What are the relative merits of internal-combustion and electric cars, of coal and nuclear energy? The problems are marvelously diverse, yet the skills to solve them are the same. The authors show how easy it is to derive useful ballpark estimates by breaking complex problems into simpler, more manageable ones--and how there can be many paths to the right answer. The book is written in a question-and-answer format with lots of hints along the way. It includes a handy appendix summarizing the few formulas and basic science concepts needed, and its small size and French-fold design make it conveniently portable. Illustrated with humorous pen-and-ink sketches, Guesstimation will delight popular-math enthusiasts and is ideal for the classroom.
Numbers: A Very Short Introduction
Peter M. Higgins - 2010
In this Very Short Introduction, Peter M. Higgins, a renowned popular-science writer, unravels the world of numbers, demonstrating its richness and providing an overview of all the number types that feature in modern science and mathematics. Indeed, Higgins paints a crystal-clear picture of the number world, showing how the modern number system matured over many centuries, and introducing key concepts such as integers, fractions, real and imaginary numbers, and complex numbers. Higgins sheds light on such fascinating topics as the series of primes, describing how primes are now used to encrypt confidential data on the internet. He also explores the infinite nature of number collections and explains how the so-called real numbers knit together to form the continuum of the number line. Written in the fashion of Higgins' highly popular science paperbacks, Numbers accurately explains the nature of numbers and how so-called complex numbers and number systems are used in calculations that arise in real problems.
Statistics: An Introduction Using R
Michael J. Crawley - 2005
R is one of the most powerful and flexible statistical software packages available, and enables the user to apply a wide variety of statistical methods ranging from simple regression to generalized linear modelling. Statistics: An Introduction using R is a clear and concise introductory textbook to statistical analysis using this powerful and free software, and follows on from the success of the author's previous best-selling title Statistical Computing. * Features step-by-step instructions that assume no mathematics, statistics or programming background, helping the non-statistician to fully understand the methodology. * Uses a series of realistic examples, developing step-wise from the simplest cases, with the emphasis on checking the assumptions (e.g. constancy of variance and normality of errors) and the adequacy of the model chosen to fit the data. * The emphasis throughout is on estimation of effect sizes and confidence intervals, rather than on hypothesis testing. * Covers the full range of statistical techniques likely to be need to analyse the data from research projects, including elementary material like t-tests and chi-squared tests, intermediate methods like regression and analysis of variance, and more advanced techniques like generalized linear modelling. * Includes numerous worked examples and exercises within each chapter. * Accompanied by a website featuring worked examples, data sets, exercises and solutions: http: //www.imperial.ac.uk/bio/research/crawl... Statistics: An Introduction using R is the first text to offer such a concise introduction to a broad array of statistical methods, at a level that is elementary enough to appeal to a broad range of disciplines. It is primarily aimed at undergraduate students in medicine, engineering, economics and biology - but will also appeal to postgraduates who have not previously covered this area, or wish to switch to using R.
Probability Theory: The Logic of Science
E.T. Jaynes - 1999
It discusses new results, along with applications of probability theory to a variety of problems. The book contains many exercises and is suitable for use as a textbook on graduate-level courses involving data analysis. Aimed at readers already familiar with applied mathematics at an advanced undergraduate level or higher, it is of interest to scientists concerned with inference from incomplete information.
The Numbers Game: The Commonsense Guide to Understanding Numbers in the News, in Politics, and in Life
Michael Blastland - 2008
Drawing on their hugely popular BBC Radio 4 show More or Less,, journalist Michael Blastland and internationally known economist Andrew Dilnot delight, amuse, and convert American mathphobes by showing how our everyday experiences make sense of numbers. The radical premise of The Numbers Game is to show how much we already know, and give practical ways to use our knowledge to become cannier consumers of the media. In each concise chapter, the authors take on a different theme—such as size, chance, averages, targets, risk, measurement, and data—and present it as a memorable and entertaining story. If you’ve ever wondered what “average” really means, whether the scare stories about cancer risk should convince you to change your behavior, or whether a story you read in the paper is biased (and how), you need this book. Blastland and Dilnot show how to survive and thrive on the torrent of numbers that pours through everyday life. It’s the essential guide to every cause you love or hate, and every issue you follow, in the language everyone uses.
Calculus
Dale E. Varberg - 1999
Covering various the materials needed by students in engineering, science, and mathematics, this calculus text makes effective use of computing technology, graphics, and applications. It presents at least two technology projects in each chapter.
Zero: The Biography of a Dangerous Idea
Charles Seife - 2000
For centuries, the power of zero savored of the demonic; once harnessed, it became the most important tool in mathematics. Zero follows this number from its birth as an Eastern philosophical concept to its struggle for acceptance in Europe and its apotheosis as the mystery of the black hole. Today, zero lies at the heart of one of the biggest scientific controversies of all time, the quest for the theory of everything. Elegant, witty, and enlightening, Zero is a compelling look at the strangest number in the universe and one of the greatest paradoxes of human thought.
Math, Better Explained: Learn to Unlock Your Math Intuition
Kalid Azad - 2011
Whether you're a student, parent, or teacher, this book is your key to unlocking the aha! moments that make math truly click -- and make learning enjoyable.The book intentionally avoids mindless definitions and focuses on building a deep, natural intuition so you can integrate the ideas into your everyday thinking. Its explanations on the natural logarithm, imaginary numbers, exponents and the Pythagorean Theorem are among the most-visited in the world.The topics in Math, Better Explained include:1. Developing Math Intuition2. The Pythagorean Theorem3. Pythagorean Distance4. Radians and Degrees5. Imaginary Numbers6. Complex Arithmetic7. Exponential Functions & e8. The Natural Logarithm (ln)9. Interest Rates10. Understanding Exponents11. Euler’s Formula12. Introduction To CalculusThe book is written as the author wishes math was taught: with a friendly attitude, vivid illustrations and a focus on true understanding. Learn right, not rote!
Everything and More: A Compact History of Infinity
David Foster Wallace - 2003
Now he brings his considerable talents to the history of one of math's most enduring puzzles: the seemingly paradoxical nature of infinity.Is infinity a valid mathematical property or a meaningless abstraction? The nineteenth-century mathematical genius Georg Cantor's answer to this question not only surprised him but also shook the very foundations upon which math had been built. Cantor's counterintuitive discovery of a progression of larger and larger infinities created controversy in his time and may have hastened his mental breakdown, but it also helped lead to the development of set theory, analytic philosophy, and even computer technology.Smart, challenging, and thoroughly rewarding, Wallace's tour de force brings immediate and high-profile recognition to the bizarre and fascinating world of higher mathematics.
Introduction to Real Analysis
Robert G. Bartle - 1982
Therefore, this book provides the fundamental concepts and techniques of real analysis for readers in all of these areas. It helps one develop the ability to think deductively, analyze mathematical situations and extend ideas to a new context. Like the first two editions, this edition maintains the same spirit and user-friendly approach with some streamlined arguments, a few new examples, rearranged topics, and a new chapter on the Generalized Riemann Integral.
Vector Calculus
Jerrold E. Marsden - 1976
The book's careful account is a contemporary balance between theory, application, and historical development, providing it's readers with an insight into how mathematics progresses and is in turn influenced by the natural world.