Book picks similar to
Probability and Statistics with Reliability, Queuing, and Computer Science Applications by Kishor Shridharbhai Trivedi
probability-statistics
home-office
mat
mathematics
Problems Plus In Iit Mathematics
A. Das Gupta
This is type of problems asked at the JEE (IIT). The purpose of this book is to show students how to handle such problems and give them sufficient practice in solving problems of this type, thus building their confidence. The main features of this book are:Each chapter begins with a summary of facts, formulate and working techniques. Trick, tips and techniques have been clearly marked with the icon.A large number of problems have been solved and explained in each chapter.The exercises contain short-answer, long-answer and objective type questions.Multiple-choice questions in which more than one option may be correct have also been given.Time-bound tests at the end of each chapter will help students practise answering questions in a given time.The book also includes integrated tests, bases on all the chapters.A chapter containing miscellaneous problems has been given at the end of the book. This will help students gain confidence in solving problems without prior knowledge of the chapter(s) to which the problems belong.Table of ContentsAlgebraProgressions, Related Inequalities and SeriesDeterminants and Cramer's RuleEquations, Inequations and ExpressionsComplex NumbersPermutation and CombinationBinomial Theorem for Positive Integral IndexPrinciple of Mathematical Induction (PMI)Infinite SeriesMatricesTrigonometryCircular Functions, IdentitiesSolution of EquationsInverse Circular FunctionsTrigonometrical Inequalities and InequationsLogarithmProperties of TriangleHeights and DistancesCoordinate GeometryCoordinates and Straight LinesPairs of Straight Lines and Transformation of AxesCirclesParabolaEllipse and HyperbolaCalculusFunctionDifferentiationLimit, Indeterminate FormContinuity, Differentiability and Graph of FunctionApplication of dy/dxMaxima and MinimaMonotonic Function and Lagrange's TheoremIndefinite In
Mathematics In The Modern World: Readings From Scientific American
Morris Kline - 1968
Bayes Theorem Examples: An Intuitive Guide
Scott Hartshorn - 2016
Essentially, you are estimating a probability, but then updating that estimate based on other things that you know. This book is designed to give you an intuitive understanding of how to use Bayes Theorem. It starts with the definition of what Bayes Theorem is, but the focus of the book is on providing examples that you can follow and duplicate. Most of the examples are calculated in Excel, which is useful for updating probability if you have dozens or hundreds of data points to roll in.
104 Number Theory Problems: From the Training of the USA IMO Team
Titu Andreescu - 2006
Offering inspiration and intellectual delight, the problems throughout the book encourage students to express their ideas in writing to explain how they conceive problems, what conjectures they make, and what conclusions they reach. Applying specific techniques and strategies, readers will acquire a solid understanding of the fundamental concepts and ideas of number theory.
Statistics for Management
Richard I. Levin - 1978
Like its predecessors, the seventh edition includes the absolute minimum of mathematical/statistical notation necessary to teach the material. Concepts are fully explained in simple, easy-to-understand language as they are presented, making the book an excellent source from which to learn and teach. After each discussion, readers are guided through real-world examples to show how book principles work in professional practice. Includes easy-to-understand explanations of difficult statistical topics, such as sampling distributions, relationship between confidence level and confidence interval, interpreting r-square. A complete package of teaching/learning aids is provided in every chapter, including chapter review exercises, chapter concepts tests,"Statistics at Work" conceptual cases, "Computer Database Exercises," "From the Textbook to the Real-World Examples." This ISBN is in two volumes Part A and Part B.
The Monty Hall Problem: The Remarkable Story of Math's Most Contentious Brain Teaser
Jason Rosenhouse - 2009
Imagine that you face three doors, behind one of which is a prize. You choose one but do not open it. The host--call him Monty Hall--opens a different door, alwayschoosing one he knows to be empty. Left with two doors, will you do better by sticking with your first choice, or by switching to the other remaining door? In this light-hearted yet ultimately serious book, Jason Rosenhouse explores the history of this fascinating puzzle. Using a minimum ofmathematics (and none at all for much of the book), he shows how the problem has fascinated philosophers, psychologists, and many others, and examines the many variations that have appeared over the years. As Rosenhouse demonstrates, the Monty Hall Problem illuminates fundamental mathematical issuesand has abiding philosophical implications. Perhaps most important, he writes, the problem opens a window on our cognitive difficulties in reasoning about uncertainty.
Student Solutions Manual, Vol. 1 for Swokowski's Calculus: The Classic Edition
Earl W. Swokowski - 1991
Prepare for exams and succeed in your mathematics course with this comprehensive solutions manual! Featuring worked out-solutions to the problems in CALCULUS: THE CLASSIC EDITION, 5th Edition, this manual shows you how to approach and solve problems using the same step-by-step explanations found in your textbook examples.
How to Count to Infinity
Marcus du Sautoy - 2020
But this book will help you to do something that humans have only recently understood how to do: to count to regions that no animal has ever reached.
By the end of this book you'll be able to count to infinity... and beyond.
On our way to infinity we'll discover how the ancient Babylonians used their bodies to count to 60 (which gave us 60 minutes in the hour), how the number zero was only discovered in the 7th century by Indian mathematicians contemplating the void, why in China going into the red meant your numbers had gone negative and why numbers might be our best language for communicating with alien life.But for millennia, contemplating infinity has sent even the greatest minds into a spin. Then at the end of the nineteenth century mathematicians discovered a way to think about infinity that revealed that it is a number that we can count. Not only that. They found that there are an infinite number of infinities, some bigger than others. Just using the finite neurons in your brain and the finite pages in this book, you'll have your mind blown discovering the secret of how to count to infinity.Do something amazing and learn a new skill thanks to the Little Ways to Live a Big Life books!
Stochastic Calculus Models for Finance II: Continuous Time Models (Springer Finance)
Steven E. Shreve - 2004
The content of this book has been used successfully with students whose mathematics background consists of calculus and calculus-based probability. The text gives both precise statements of results, plausibility arguments, and even some proofs, but more importantly intuitive explanations developed and refine through classroom experience with this material are provided. The book includes a self-contained treatment of the probability theory needed for shastic calculus, including Brownian motion and its properties. Advanced topics include foreign exchange models, forward measures, and jump-diffusion processes.This book is being published in two volumes. This second volume develops shastic calculus, martingales, risk-neutral pricing, exotic options and term structure models, all in continuous time.Masters level students and researchers in mathematical finance and financial engineering will find this book useful.Steven E. Shreve is Co-Founder of the Carnegie Mellon MS Program in Computational Finance and winner of the Carnegie Mellon Doherty Prize for sustained contributions to education.
Cosmology: Philosophy & Physics
alexis karpouzos - 2015
Cosmic Universe and Human History, microcosm and macrocosm, inorganic and living matter coexist and form a unique unity manifested in multiple forms. The Physical and the Mental constitute the form and the content of the World. The world does not consist of subjects and objects, the “subject” and the “object” are metaphysical abstractions of the single and indivisible Wholeness. Man’s finite knowledge separates the Whole into parts and studies fragmentarily the beings. The Wholeness is manifested in multiple forms and each form encapsulates the Wholeness. The rational explanation of the excerpts and the intuitive apprehension of the Wholeness are required to combine and create the open thought and the holistic knowledge. This means that the measurement should be defined by the ''measure'', but the responsibility for determining the ''measure'' depends on the man. This requires that man overcomes the anthropocentric arrogance and the narcissistic selfishness and he joins the Cosmic World in a friendly and creative manner.
Tic Tac Toe: 8 Strategies to Win Every Game
Puzzleland - 2016
Make the bet more attractive for them: the game could have 10 or 20 rounds, and you’ll give them the privilege of starting first in every s-i-n-g-l-e round. “Piece of cake!” they will think and they will take the bet. Only to discover in despair, 10 or 20 rounds later, that it is impossible to beat you, even once. This book reveals a simple system that will help you never lose a single game from the moment you learn them. Let us repeat that.After reading this book and for the rest of your life, you will never, ever lose a game of Tic-Tac-Toe again! How is it possible never to lose in Tic-Tac-Toe? Tic-Tac-Toe is a “solved” game, meaning that there are mathematically proven strategies to defend yourself against losing. If you play with these optimal strategies in mind, you may win and you can’t lose. If your opponent also plays with the optimal strategies in mind, neither will win, and the game will always end in a draw.However, very few people really know these strategies.This book reveals an easy system of only 8 strategies that will make you a Tic-Tac-Toe Master. If you learn and start applying these 8 strategies, we guarantee that you will never lose a game of Tic-Tac-Toe again. Is it easy to learn these strategies? Very easy! These 8 strategies are presented in 8 mini chapters, with illustrations and step-by-step explanations. Even a kid can read this book and learn the strategies!In just 1 hour you will have learnt all 8 strategies and you will be ready to start applying them. Will I have to think too hard to apply these strategies? As a matter of fact, all you have to do is to memorize our simple system. As soon as you learn this system, every game will be a no-brainer for you. Our system tells you exactly how to play or how to respond to your opponent’s move. Simple as A-B-C.For example, if your opponent plays first and chooses a corner, our system tells you exactly how to respond in order to eliminate any chance of losing the game. Is this for real? Do you guarantee that I will never lose a TTT game again? YES!!! We challenge you to read this book and then immediately start playing Tic-Tac-Toe online, against a computer, applying everything you have learnt. You will discover that even a computer can’t beat you.Your new super powers in Tic-Tac-Toe will blow your mind! Start right now! Buy the book, learn the strategies and NEVER lose a Tic-Tac-Toe game again from that moment and for the rest of your life!Scroll to the top of the page and click the BUY WITH 1-CLICK Button!
Problems in Mathematics with Hints and Solutions
V. Govorov - 1996
Theory has been provided in points between each chapter for clarifying relevant basic concepts. The book consist four parts algebra and trigonometry, fundamentals of analysis, geometry and vector algebra and the problems and questions set during oral examinations. Each chapter consist topic wise problems. Sample examples are provided after each text for understanding the topic well. The fourth part "oral examination problems and question" includes samples suggested by the higher schools for the help of students. Answers and hints are given at the end of the book for understanding the concept well. About the Book: Problems in Mathematics with Hints and Solutions Contents: Preface Part 1. Algebra, Trigonometry and Elementary Functions Problems on Integers. Criteria for Divisibility Real Number, Transformation of Algebraic Expressions Mathematical Induction. Elements of Combinatorics. BinomialTheorem Equations and Inequalities of the First and the SecondDegree Equations of Higher Degrees, Rational Inequalities Irrational Equations and Inequalities Systems of Equations and Inequalities The Domain of Definition and the Range of a Function Exponential and Logarithmic Equations and Inequalities Transformations of Trigonometric Expressions. InverseTrigonometric Functions Solutions of Trigonometric Equations, Inequalities and Systemsof Equations Progressions Solutions of Problems on Derivation of Equations Complex Numbers Part 2. Fundamentals of Mathematical Analysis Sequences and Their Limits. An Infinitely Decreasing GeometricProgression. Limits of Functions The Derivative. Investigating the Behaviors of Functions withthe Aid of the Derivative Graphs of Functions The Antiderivative. The Integral. The Area of a CurvilinearTrapezoid Part 3. Geometry and Vector Algebra Vector Algebra Plane Geometry. Problems on Proof Plane Geometry. Construction Problems Plane Geometry. C
Godel: A Life Of Logic, The Mind, And Mathematics
John L. Casti - 2000
His Incompleteness Theorem turned not only mathematics but also the whole world of science and philosophy on its head. Equally legendary were Gö's eccentricities, his close friendship with Albert Einstein, and his paranoid fear of germs that eventually led to his death from self-starvation. Now, in the first popular biography of this strange and brilliant thinker, John Casti and Werner DePauli bring the legend to life. After describing his childhood in the Moravian capital of Brno, the authors trace the arc of Gö's remarkable career, from the famed Vienna Circle, where philosophers and scientists debated notions of truth, to the Institute for Advanced Study in Princeton, New Jersey, where he lived and worked until his death in 1978. In the process, they shed light on Gö's contributions to mathematics, philosophy, computer science, artificial intelligence -- even cosmology -- in an entertaining and accessible way.