Book picks similar to
An Introduction to R for Spatial Analysis and Mapping by Chris Brunsdon
statistics
data-science
textbooks
school
An Introduction to Genetic Algorithms
Melanie Mitchell - 1996
This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics--particularly in machine learning, scientific modeling, and artificial life--and reviews a broad span of research, including the work of Mitchell and her colleagues.The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting general purpose nature of genetic algorithms as search methods that can be employed across disciplines.An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.
Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences
Jacob Cohen - 1975
Readers profit from its verbal-conceptual exposition and frequent use of examples.The applied emphasis provides clear illustrations of the principles and provides worked examples of the types of applications that are possible. Researchers learn how to specify regression models that directly address their research questions. An overview of the fundamental ideas of multiple regression and a review of bivariate correlation and regression and other elementary statistical concepts provide a strong foundation for understanding the rest of the text. The third edition features an increased emphasis on graphics and the use of confidence intervals and effect size measures, and an accompanying website with data for most of the numerical examples along with the computer code for SPSS, SAS, and SYSTAT, at www.psypress.com/9780805822236 .Applied Multiple Regression serves as both a textbook for graduate students and as a reference tool for researchers in psychology, education, health sciences, communications, business, sociology, political science, anthropology, and economics. An introductory knowledge of statistics is required. Self-standing chapters minimize the need for researchers to refer to previous chapters.
The Art of R Programming: A Tour of Statistical Software Design
Norman Matloff - 2011
No statistical knowledge is required, and your programming skills can range from hobbyist to pro.Along the way, you'll learn about functional and object-oriented programming, running mathematical simulations, and rearranging complex data into simpler, more useful formats. You'll also learn to: Create artful graphs to visualize complex data sets and functions Write more efficient code using parallel R and vectorization Interface R with C/C++ and Python for increased speed or functionality Find new R packages for text analysis, image manipulation, and more Squash annoying bugs with advanced debugging techniques Whether you're designing aircraft, forecasting the weather, or you just need to tame your data, The Art of R Programming is your guide to harnessing the power of statistical computing.
Statistics Done Wrong: The Woefully Complete Guide
Alex Reinhart - 2013
Politicians and marketers present shoddy evidence for dubious claims all the time. But smart people make mistakes too, and when it comes to statistics, plenty of otherwise great scientists--yes, even those published in peer-reviewed journals--are doing statistics wrong."Statistics Done Wrong" comes to the rescue with cautionary tales of all-too-common statistical fallacies. It'll help you see where and why researchers often go wrong and teach you the best practices for avoiding their mistakes.In this book, you'll learn: - Why "statistically significant" doesn't necessarily imply practical significance- Ideas behind hypothesis testing and regression analysis, and common misinterpretations of those ideas- How and how not to ask questions, design experiments, and work with data- Why many studies have too little data to detect what they're looking for-and, surprisingly, why this means published results are often overestimates- Why false positives are much more common than "significant at the 5% level" would suggestBy walking through colorful examples of statistics gone awry, the book offers approachable lessons on proper methodology, and each chapter ends with pro tips for practicing scientists and statisticians. No matter what your level of experience, "Statistics Done Wrong" will teach you how to be a better analyst, data scientist, or researcher.
Deep Learning with Python
François Chollet - 2017
It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.
First Aid for the USMLE Step 2 CS
Tao Le - 2006
The top-selling CS review book written by students and IMGs who recently passed 100+ high-yield minicases by chief complaint 30 complete cases simulate the exam experience Contains new Patient Encounters, including telephone interviews Perfect for group or solo study YOUR COMPLETE CS SURVIVAL GUIDE FROM THE AUTHORS OF FIRST AID FOR THE USMLE STEP 1 INSIDER ADVICE FOR STEP 2 CS SUCCESS New miniguide shows US students and IMGs how best to use this book Revised by test veterans to reflect the 2005--2006 exam experience Each complete case features standardized patient checklists and a recommended clinical approach Minicases represent the major chief complaints and diagnoses seen on the Step 2 CS Proven strategies for the patient encounter and patient note High-yield, must-know facts on patient diagnosis and workup.
The R Book
Michael J. Crawley - 2007
The R language is recognised as one of the most powerful and flexible statistical software packages, and it enables the user to apply many statistical techniques that would be impossible without such software to help implement such large data sets.
Objects First with Java: A Practical Introduction Using BlueJ
David J. Barnes - 2002
It takes a truly objects first approach to teaching problem solving using Java. These are complicated concepts so the book uses the development environment BlueJ to help the student's understanding. BlueJ has a strong emphasis on visualization and interaction techniques, and allows the students to manipulate objects and call methods as a first exercise. BlueJ is free and freely available, and has been developed specifically for teaching. The book is loaded with projects so that the student can really get a grip on actually solving problems; and it takes a spiral approach , introducing a topic in a simple context early on, then revisiting it later in the book to deepen understanding. It also comes with a CD containing JDK, BlueJ, a BlueJ tutorial and code for all the projects. The website contains style guide for all examples, PowerPoints for lecturers and also a Solutions Manual.
Building Java Programs: A Back to Basics Approach
Stuart Reges - 2007
By using objects early to solve interesting problems and defining objects later in the course, Building Java Programs develops programming knowledge for a broad audience. Introduction to Java Programming, Primitive Data and Definite Loops, Introduction to Parameters and Objects, Conditional Execution, Program Logic and Indefinite Loops, File Processing, Arrays, Defining Classes, Inheritance and Interfaces, ArrayLists, Java Collections Framework, Recursion, Searching and Sorting, Graphical User Interfaces. For all readers interested in introductory programming.
Data Structures Using C++
D.S. Malik - 2003
D.S. Malik is ideal for a one-semester course focused on data structures. Clearly written with the student in mind, this text focuses on Data Structures and includes advanced topics in C++ such as Linked Lists and the Standard Template Library (STL). This student-friendly text features abundant Programming Examples and extensive use of visual diagrams to reinforce difficult topics. Students will find Dr. Malik's use of complete programming code and clear display of syntax, explanation, and example easy to read and conducive to learning.
Time Series Analysis
James Douglas Hamilton - 1994
This book synthesizes these recent advances and makes them accessible to first-year graduate students. James Hamilton provides the first adequate text-book treatments of important innovations such as vector autoregressions, generalized method of moments, the economic and statistical consequences of unit roots, time-varying variances, and nonlinear time series models. In addition, he presents basic tools for analyzing dynamic systems (including linear representations, autocovariance generating functions, spectral analysis, and the Kalman filter) in a way that integrates economic theory with the practical difficulties of analyzing and interpreting real-world data. Time Series Analysis fills an important need for a textbook that integrates economic theory, econometrics, and new results.The book is intended to provide students and researchers with a self-contained survey of time series analysis. It starts from first principles and should be readily accessible to any beginning graduate student, while it is also intended to serve as a reference book for researchers.-- "Journal of Economics"
The Art and Science of Java
Eric S. Roberts - 2007
By following the recommendations of the Association of Computing Machinery's Java Task Force, this first edition text adopts a modern objects-first approach that introduces readers to useful hierarchies from the very beginning.KEY TOPICS: Introduction; Programming by Example; Expressions; Statement Forms; Methods; Objects and Classes; Objects and Memory; Strings and Characters; Object-Oriented Graphics; Event-Driven Programs; Arrays and ArrayLists; Searching and Sorting; Collection Classes; Looking Ahead.MARKET: A modern objects-first approach to the Java programming language that introduces readers to useful class hierarchies from the very beginning.
Python Machine Learning
Sebastian Raschka - 2015
We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world
Sin Boldly!: Dr. Dave's Guide To Acing The College Paper
David R. Williams - 1994
Jammed with sage advice, genuine encouragement, and surprising examples of how to write and how not to write, this book gives beginning writers and confident students alike an easy-to-follow roadmap for improving one of the most important skills for success. En route to Sin Boldly!-induced, A+ paper bliss, readers encounter such topics as:Choosing a Topic and Telling Your Story ("K.I.S.S.-Keep It Simple, Stupid")Literary Games (featuring "Francobabble for Freshman")Choosing a Voice ("Dissing the Prof")Grammatical Horrors ("A does not equal they")Common Mistakes ("Hopefully and Other Controversies") Fully revised and updated with new examples, quizzes, and tips, Sin Boldly! is not only a comprehensive guide, but also a fantastic, fun read for anyone who wants to write clearly and effectively.
Calling Bullshit: The Art of Skepticism in a Data-Driven World
Carl T. Bergstrom - 2020
Now, two science professors give us the tools to dismantle misinformation and think clearly in a world of fake news and bad data.It's increasingly difficult to know what's true. Misinformation, disinformation, and fake news abound. Our media environment has become hyperpartisan. Science is conducted by press release. Startup culture elevates bullshit to high art. We are fairly well equipped to spot the sort of old-school bullshit that is based in fancy rhetoric and weasel words, but most of us don't feel qualified to challenge the avalanche of new-school bullshit presented in the language of math, science, or statistics. In Calling Bullshit, Professors Carl Bergstrom and Jevin West give us a set of powerful tools to cut through the most intimidating data.You don't need a lot of technical expertise to call out problems with data. Are the numbers or results too good or too dramatic to be true? Is the claim comparing like with like? Is it confirming your personal bias? Drawing on a deep well of expertise in statistics and computational biology, Bergstrom and West exuberantly unpack examples of selection bias and muddled data visualization, distinguish between correlation and causation, and examine the susceptibility of science to modern bullshit.We have always needed people who call bullshit when necessary, whether within a circle of friends, a community of scholars, or the citizenry of a nation. Now that bullshit has evolved, we need to relearn the art of skepticism.