Book picks similar to
Engineering Production-Grade Shiny Apps by Colin Fay
digital-drm-free
technical
visualization
00_complete
PostgreSQL: Up and Running
Regina O. Obe - 2012
Not only will you learn about the enterprise class features in the 9.2 release, you’ll also discover that PostgeSQL is more than just a database system—it’s also an impressive application platform.With numerous examples throughout this book, you’ll learn how to achieve tasks that are difficult or impossible in other databases. If you’re an existing PostgreSQL user, you’ll pick up gems you may have missed along the way.Learn basic administration tasks, such as role management, database creation, backup, and restoreApply the psql command-line utility and the pgAdmin graphical administration toolExplore PostgreSQL tables, constraints, and indexesLearn powerful SQL constructs not generally found in other databasesUse several different languages to write database functionsTune your queries to run as fast as your hardware will allowQuery external and variegated data sources with Foreign Data WrappersLearn how to replicate data, using built-in replication features
VMware vSphere 5 Clustering Technical Deepdive
Frank Denneman - 2011
It covers the basic steps needed to create a vSphere HA and vSphere DRS cluster and to implement vSphere Storage DRS. Even more important, it explains the concepts and mechanisms behind HA, DRS and Storage DRS which will enable you to make well educated decisions. This book will take you in to the trenches of HA, DRS and Storage DRS and will give you the tools to understand and implement e.g. HA admission control policies, DRS resource pools, Datastore Clusters and resource allocation settings. On top of that each section contains basic design principles that can be used for designing, implementing or improving VMware infrastructures and fundamental supporting features like (Storage) vMotion, Storage I/O Control and much more are described in detail for the very first time. This book is also the ultimate guide to be prepared for any HA, DRS or Storage DRS related question or case study that might be presented during VMware VCDX, VCP and or VCAP exams.Coverage includes: HA node types HA isolation detection and response HA admission control VM Monitoring HA and DRS integration DRS imbalance algorithm Resource Pools Impact of reservations and limits CPU Resource Scheduling Memory Scheduler DPM Datastore Clusters Storage DRS algorithm Influencing SDRS recommendationsBe prepared to dive deep!
Working at the Ubuntu Command-Line Prompt
Keir Thomas - 2011
His books have been read by over 1,000,000 people and are #1 best-sellers. His book Beginning Ubuntu Linux recently entered its sixth edition, and picked-up a Linux Journal award along the way. Thomas is also the author of Ubuntu Kung Fu. * * * * * * * * * * * * * * * * * Get to grips with the Ubuntu command-line with this #1 best-selling and concise guide. "Best buck I've spent yet" — Amazon review.* Readable, accessible and easy to understand;* Learn essential Ubuntu vocational skills, or read just for fun;* Covers Ubuntu commands, syntax, the filesystem, plus advanced techniques;* For ANY version of Linux based on Debian, such as Linux Mint--not just Ubuntu!;* Includes BONUS introduction to Ubuntu chapter, plus a glossary appendix and a guide to reading Linux/Unix documentation.
Kafka: The Definitive Guide: Real-Time Data and Stream Processing at Scale
Neha Narkhede - 2017
And how to move all of this data becomes nearly as important as the data itself. If you� re an application architect, developer, or production engineer new to Apache Kafka, this practical guide shows you how to use this open source streaming platform to handle real-time data feeds.Engineers from Confluent and LinkedIn who are responsible for developing Kafka explain how to deploy production Kafka clusters, write reliable event-driven microservices, and build scalable stream-processing applications with this platform. Through detailed examples, you� ll learn Kafka� s design principles, reliability guarantees, key APIs, and architecture details, including the replication protocol, the controller, and the storage layer.Understand publish-subscribe messaging and how it fits in the big data ecosystem.Explore Kafka producers and consumers for writing and reading messagesUnderstand Kafka patterns and use-case requirements to ensure reliable data deliveryGet best practices for building data pipelines and applications with KafkaManage Kafka in production, and learn to perform monitoring, tuning, and maintenance tasksLearn the most critical metrics among Kafka� s operational measurementsExplore how Kafka� s stream delivery capabilities make it a perfect source for stream processing systems
A Guide to the Business Analysis Body of Knowledge
IIBA - 2009
Business analysis involves understanding how organizations function to accomplish their purposes and defining the capabilities an organization requires to provide products and services to external stakeholders. It includes the definition of organizational goals, understanding how those goals connect to specific objectives, determining the courses of action that an organization has to undertake to achieve those goals and objectives, and defining how the various organizational units and stakeholders within and outside of that organization interact. A Guide to the Business Analysis Body of Knowledge® (BABOK® Guide) contains a description of generally accepted practices in the field of business analysis. The content included in this release has been verified through reviews by practitioners, surveys of the business analysis community, and consultations with recognized experts in the field. In less than five years, the BABOK® Guide has been recognized around the world as a key tool for the practice of business analysis and become a widely-accepted standard for the profession, with over 200,000 copies downloaded from the IIBA® website. Version 2.0 represents a major advance on that standard, and will become an essential reference for business analysis professionals.
SQL Performance Explained
Markus Winand - 2011
The focus is on SQL-it covers all major SQL databases without getting lost in the details of any one specific product. Starting with the basics of indexing and the WHERE clause, SQL Performance Explained guides developers through all parts of an SQL statement and explains the pitfalls of object-relational mapping (ORM) tools like Hibernate. Topics covered include: Using multi-column indexes; Correctly applying SQL functions; Efficient use of LIKE queries; Optimizing join operations; Clustering data to improve performance; Pipelined execution of ORDER BY and GROUP BY; Getting the best performance for pagination queries; Understanding the scalability of databases. Its systematic structure makes SQL Performance Explained both a textbook and a reference manual that should be on every developer's bookshelf.
The Efficiency Paradox: What Big Data Can't Do
Edward Tenner - 2018
One of the great promises of the Internet and big data revolutions is the idea that we can improve the processes and routines of our work and personal lives to get more done in less time than ever before. There is no doubt that we're performing at higher scales and going faster than ever, but what if we're headed in the wrong direction?The Efficiency Paradox questions our ingrained assumptions about efficiency, persuasively showing how relying on the algorithms of platforms can in fact lead to wasted efforts, missed opportunities, and above all an inability to break out of established patterns. Edward Tenner offers a smarter way to think about efficiency, showing how we can combine artificial intelligence and our own intuition, leaving ourselves and our institutions open to learning from the random and unexpected.
Python Testing with Pytest: Simple, Rapid, Effective, and Scalable
Brian Okken - 2017
The pytest testing framework helps you write tests quickly and keep them readable and maintainable - with no boilerplate code. Using a robust yet simple fixture model, it's just as easy to write small tests with pytest as it is to scale up to complex functional testing for applications, packages, and libraries. This book shows you how.For Python-based projects, pytest is the undeniable choice to test your code if you're looking for a full-featured, API-independent, flexible, and extensible testing framework. With a full-bodied fixture model that is unmatched in any other tool, the pytest framework gives you powerful features such as assert rewriting and plug-in capability - with no boilerplate code.With simple step-by-step instructions and sample code, this book gets you up to speed quickly on this easy-to-learn and robust tool. Write short, maintainable tests that elegantly express what you're testing. Add powerful testing features and still speed up test times by distributing tests across multiple processors and running tests in parallel. Use the built-in assert statements to reduce false test failures by separating setup and test failures. Test error conditions and corner cases with expected exception testing, and use one test to run many test cases with parameterized testing. Extend pytest with plugins, connect it to continuous integration systems, and use it in tandem with tox, mock, coverage, unittest, and doctest.Write simple, maintainable tests that elegantly express what you're testing and why.What You Need: The examples in this book are written using Python 3.6 and pytest 3.0. However, pytest 3.0 supports Python 2.6, 2.7, and Python 3.3-3.6.
Hadoop: The Definitive Guide
Tom White - 2009
Ideal for processing large datasets, the Apache Hadoop framework is an open source implementation of the MapReduce algorithm on which Google built its empire. This comprehensive resource demonstrates how to use Hadoop to build reliable, scalable, distributed systems: programmers will find details for analyzing large datasets, and administrators will learn how to set up and run Hadoop clusters. Complete with case studies that illustrate how Hadoop solves specific problems, this book helps you:Use the Hadoop Distributed File System (HDFS) for storing large datasets, and run distributed computations over those datasets using MapReduce Become familiar with Hadoop's data and I/O building blocks for compression, data integrity, serialization, and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster, or run Hadoop in the cloud Use Pig, a high-level query language for large-scale data processing Take advantage of HBase, Hadoop's database for structured and semi-structured data Learn ZooKeeper, a toolkit of coordination primitives for building distributed systems If you have lots of data -- whether it's gigabytes or petabytes -- Hadoop is the perfect solution. Hadoop: The Definitive Guide is the most thorough book available on the subject. "Now you have the opportunity to learn about Hadoop from a master-not only of the technology, but also of common sense and plain talk." -- Doug Cutting, Hadoop Founder, Yahoo!
The Deep Learning Revolution
Terrence J. Sejnowski - 2018
Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy.Sejnowski played an important role in the founding of deep learning, as one of a small group of researchers in the 1980s who challenged the prevailing logic-and-symbol based version of AI. The new version of AI Sejnowski and others developed, which became deep learning, is fueled instead by data. Deep networks learn from data in the same way that babies experience the world, starting with fresh eyes and gradually acquiring the skills needed to navigate novel environments. Learning algorithms extract information from raw data; information can be used to create knowledge; knowledge underlies understanding; understanding leads to wisdom. Someday a driverless car will know the road better than you do and drive with more skill; a deep learning network will diagnose your illness; a personal cognitive assistant will augment your puny human brain. It took nature many millions of years to evolve human intelligence; AI is on a trajectory measured in decades. Sejnowski prepares us for a deep learning future.
Access 2010: The Missing Manual
Matthew MacDonald - 2010
With this book’s easy step-by-step process, you’ll quickly learn how to build and maintain a complete Access database, using Access 2013’s new, simpler user interface and templates. You also get practices and tips from the pros for good database design—ideal whether you’re using Access for school, business, or at home.The important stuff you need to know:Build a database with ease. Store information to track numbers, products, documents, and more.Customize the interface. Build your own forms to make data entry a snap.Find what you need fast. Search, sort, and summarize huge amounts of information.Put your data to use. Turn raw info into printed reports with attractive formatting.Share your data. Collaborate online with SharePoint and the Access web database.Dive into Access programming. Get tricks and techniques to automate common tasks.Create rich data connections. Build dynamic links with SQL Server, SharePoint, and other systems.
slide:ology: The Art and Science of Creating Great Presentations
Nancy Duarte - 2008
Presentation software is one of the few tools that requires professionals to think visually on an almost daily basis. But unlike verbal skills, effective visual expression is not easy, natural, or actively taught in schools or business training programs. slide:ology fills that void.Written by Nancy Duarte, President and CEO of Duarte Design, the firm that created the presentation for Al Gore's Oscar-winning film, An Inconvenient Truth, this book is full of practical approaches to visual story development that can be applied by anyone. The book combines conceptual thinking and inspirational design, with insightful case studies from the world's leading brands. With slide:ology you'll learn to:Connect with specific audiencesTurn ideas into informative graphicsUse sketching and diagramming techniques effectivelyCreate graphics that enable audiences to process information easilyDevelop truly influential presentationsUtilize presentation technology to your advantageMillions of presentations and billions of slides have been produced -- and most of them miss the mark. slide:ology will challenge your traditional approach to creating slides by teaching you how to be a visual thinker. And it will help your career by creating momentum for your cause.--back cover
A Common-Sense Guide to Data Structures and Algorithms: Level Up Your Core Programming Skills
Jay Wengrow - 2017
If you have received one of these copies, please contact the Pragmatic Bookshelf at support@pragprog.com, and we will replace it for you.Algorithms and data structures are much more than abstract concepts. Mastering them enables you to write code that runs faster and more efficiently, which is particularly important for today's web and mobile apps. This book takes a practical approach to data structures and algorithms, with techniques and real-world scenarios that you can use in your daily production code. Graphics and examples make these computer science concepts understandable and relevant. You can use these techniques with any language; examples in the book are in JavaScript, Python, and Ruby.Use Big O notation, the primary tool for evaluating algorithms, to measure and articulate the efficiency of your code, and modify your algorithm to make it faster. Find out how your choice of arrays, linked lists, and hash tables can dramatically affect the code you write. Use recursion to solve tricky problems and create algorithms that run exponentially faster than the alternatives. Dig into advanced data structures such as binary trees and graphs to help scale specialized applications such as social networks and mapping software. You'll even encounter a single keyword that can give your code a turbo boost. Jay Wengrow brings to this book the key teaching practices he developed as a web development bootcamp founder and educator.Use these techniques today to make your code faster and more scalable.
Bad Data Handbook: Cleaning Up The Data So You Can Get Back To Work
Q. Ethan McCallum - 2012
In this handbook, data expert Q. Ethan McCallum has gathered 19 colleagues from every corner of the data arena to reveal how they’ve recovered from nasty data problems.From cranky storage to poor representation to misguided policy, there are many paths to bad data. Bottom line? Bad data is data that gets in the way. This book explains effective ways to get around it.Among the many topics covered, you’ll discover how to:Test drive your data to see if it’s ready for analysisWork spreadsheet data into a usable formHandle encoding problems that lurk in text dataDevelop a successful web-scraping effortUse NLP tools to reveal the real sentiment of online reviewsAddress cloud computing issues that can impact your analysis effortAvoid policies that create data analysis roadblocksTake a systematic approach to data quality analysis
The Model Thinker: What You Need to Know to Make Data Work for You
Scott E. Page - 2018
But as anyone who has ever opened up a spreadsheet packed with seemingly infinite lines of data knows, numbers aren't enough: we need to know how to make those numbers talk. In The Model Thinker, social scientist Scott E. Page shows us the mathematical, statistical, and computational models—from linear regression to random walks and far beyond—that can turn anyone into a genius. At the core of the book is Page's "many-model paradigm," which shows the reader how to apply multiple models to organize the data, leading to wiser choices, more accurate predictions, and more robust designs. The Model Thinker provides a toolkit for business people, students, scientists, pollsters, and bloggers to make them better, clearer thinkers, able to leverage data and information to their advantage.