Calculus Made Easy


Silvanus Phillips Thompson - 1910
    With a new introduction, three new chapters, modernized language and methods throughout, and an appendix of challenging and enjoyable practice problems, Calculus Made Easy has been thoroughly updated for the modern reader.

What Is Mathematics?: An Elementary Approach to Ideas and Methods


Richard Courant - 1941
    Today, unfortunately, the traditional place of mathematics in education is in grave danger. The teaching and learning of mathematics has degenerated into the realm of rote memorization, the outcome of which leads to satisfactory formal ability but does not lead to real understanding or to greater intellectual independence. This new edition of Richard Courant's and Herbert Robbins's classic work seeks to address this problem. Its goal is to put the meaning back into mathematics.Written for beginners and scholars, for students and teachers, for philosophers and engineers, What is Mathematics? Second Edition is a sparkling collection of mathematical gems that offers an entertaining and accessible portrait of the mathematical world. Covering everything from natural numbers and the number system to geometrical constructions and projective geometry, from topology and calculus to matters of principle and the Continuum Hypothesis, this fascinating survey allows readers to delve into mathematics as an organic whole rather than an empty drill in problem solving. With chapters largely independent of one another and sections that lead upward from basic to more advanced discussions, readers can easily pick and choose areas of particular interest without impairing their understanding of subsequent parts.Brought up to date with a new chapter by Ian Stewart, What is Mathematics? Second Edition offers new insights into recent mathematical developments and describes proofs of the Four-Color Theorem and Fermat's Last Theorem, problems that were still open when Courant and Robbins wrote this masterpiece, but ones that have since been solved.Formal mathematics is like spelling and grammar - a matter of the correct application of local rules. Meaningful mathematics is like journalism - it tells an interesting story. But unlike some journalism, the story has to be true. The best mathematics is like literature - it brings a story to life before your eyes and involves you in it, intellectually and emotionally. What is Mathematics is like a fine piece of literature - it opens a window onto the world of mathematics for anyone interested to view.

A History of π


Petr Beckmann - 1970
    Petr Beckmann holds up this mirror, giving the background of the times when pi made progress -- and also when it did not, because science was being stifled by militarism or religious fanaticism.

Math for Grownups


Laura Laing - 2011
    You multiply something by something, right? Or you're scratching your head, wondering how to compute the odds that your football team will take next Sunday's game. You're pretty sure that involved ratios. The problem is, you can't quite remember.Here you get an adult refresher and real-life context—with examples ranging from how to figure out how many shingles it takes to re-roof the garage to the formula for resizing Mom's tomato sauce recipe for your entire family.Forget higher calculus—you just need an open mind. And with this practical guide, math can stop being scary and start being useful.

Number: The Language of Science


Tobias Dantzig - 1930
    Tobias Dantzig shows that the development of math—from the invention of counting to the discovery of infinity—is a profoundly human story that progressed by “trying and erring, by groping and stumbling.” He shows how commerce, war, and religion led to advances in math, and he recounts the stories of individuals whose breakthroughs expanded the concept of number and created the mathematics that we know today.

The Baseball Economist: The Real Game Exposed


J.C. Bradbury - 2007
     Two hot topics team up in The Baseball Economist, and the result is a refreshing, clear- eyed survey of a playing field that has changed radically in recent years. Utilizing the latest economic methods and statistical analysis, writer, economics professor, and popular blogger J. C. Bradbury dissects burning baseball topics with his original Sabernomic perspective, such as: • Did steroids have nothing to do with the recent home run records? Incredibly, Bradbury's research, reviewed by Stanford economists, reveals steroids had little statistical significance. • Is the big-city versus small-city competition really lopsided? Bradbury shows why the Marlins and Indians are likely to dominate big-city franchises in the coming years. • Which players are ridiculously overvalued? Bradbury lists all players by team with their revenue value to the team listed in dollars—including a dishonor role of those players with negative values. • Is major league baseball a monopoly that can't govern itself? Bradbury sets out what rules the owners really need to play by, and what the players' union should be doing. • Does it help to lobby for balls and strikes? How would Babe Ruth perform in today's game? And who killed all the left-handed catchers, anyway? The Baseball Economist knows. Providing far more than a mere collection of numbers, Bradbury shines the light of his economic thinking on baseball, exposing the power of tradeoffs, competition, and incentives. Statistics alone aren't enough anymore. Fans, fantasy buffs, and players, as well as coaches at all levels who want to grasp what is really happening on the field today and in the coming years, will use and enjoy Bradbury's brilliant new understanding of the national pastime.

Math and the Mona Lisa: The Art and Science of Leonardo Da Vinci


Bülent Atalay - 2004
    Readers of The Da Vinci Code were given a glimpse of the mysterious connections between math, science, and Leonardo's art. Math and the Mona Lisa picks up where The Da Vinci Code left off, illuminating Leonardo's life and work to uncover connections that, until now, have been known only to scholars.Following Leonardo's own unique model, Atalay searches for the internal dynamics of art and science, revealing to us the deep unity of the two cultures. He provides a broad overview of the development of science from the dawn of civilization to today's quantum mechanics. From this base of information, Atalay offers a fascinating view into Leonardo's restless intellect and modus operandi, allowing us to see the source of his ideas and to appreciate his art from a new perspective. William D. Phillips, who won the Nobel Prize in physics in 1997, writes of the author, "Atalay is indeed a modern renaissance man, and he invites us to tap the power of synthesis that is Leonardo's model."

Operations Research: Applications and Algorithms (with CD-ROM and InfoTrac)


Wayne L. Winston - 1987
    It moves beyond a mere study of algorithms without sacrificing the rigor that faculty desire. As in every edition, Winston reinforces the book's successful features and coverage with the most recent developments in the field. The Student Suite CD-ROM, which now accompanies every new copy of the text, contains the latest versions of commercial software for optimization, simulation, and decision analysis.

Discrete Mathematics


Richard Johnsonbaugh - 1984
    Focused on helping students understand and construct proofs and expanding their mathematical maturity, this best-selling text is an accessible introduction to discrete mathematics. Johnsonbaugh's algorithmic approach emphasizes problem-solving techniques. The Seventh Edition reflects user and reviewer feedback on both content and organization.

Topology


James R. Munkres - 1975
    Includes many examples and figures. GENERAL TOPOLOGY. Set Theory and Logic. Topological Spaces and Continuous Functions. Connectedness and Compactness. Countability and Separation Axioms. The Tychonoff Theorem. Metrization Theorems and paracompactness. Complete Metric Spaces and Function Spaces. Baire Spaces and Dimension Theory. ALGEBRAIC TOPOLOGY. The Fundamental Group. Separation Theorems. The Seifert-van Kampen Theorem. Classification of Surfaces. Classification of Covering Spaces. Applications to Group Theory. For anyone needing a basic, thorough, introduction to general and algebraic topology and its applications.

Finding Zero: A Mathematician's Odyssey to Uncover the Origins of Numbers


Amir D. Aczel - 2015
    Virtually everything in our lives is digital, numerical, or quantified. The story of how and where we got these numerals, which we so depend on, has for thousands of years been shrouded in mystery. Finding Zero is an adventure filled saga of Amir Aczel's lifelong obsession: to find the original sources of our numerals. Aczel has doggedly crisscrossed the ancient world, scouring dusty, moldy texts, cross examining so-called scholars who offered wildly differing sets of facts, and ultimately penetrating deep into a Cambodian jungle to find a definitive proof. Here, he takes the reader along for the ride.The history begins with the early Babylonian cuneiform numbers, followed by the later Greek and Roman letter numerals. Then Aczel asks the key question: where do the numbers we use today, the so-called Hindu-Arabic numerals, come from? It is this search that leads him to explore uncharted territory, to go on a grand quest into India, Thailand, Laos, Vietnam, and ultimately into the wilds of Cambodia. There he is blown away to find the earliest zero—the keystone of our entire system of numbers—on a crumbling, vine-covered wall of a seventh-century temple adorned with eaten-away erotic sculptures. While on this odyssey, Aczel meets a host of fascinating characters: academics in search of truth, jungle trekkers looking for adventure, surprisingly honest politicians, shameless smugglers, and treacherous archaeological thieves—who finally reveal where our numbers come from.

Zeno's Paradox: Unraveling the Ancient Mystery Behind the Science of Space and Time


Joseph Mazur - 2008
    Today, these paradoxes remain on the cutting edge of our investigations into the fabric of space and time. Zeno's Paradox uses the motion paradox as a jumping-off point for an exploration of the twenty-five-hundred-year quest to uncover the true nature of the universe. From Galileo to Einstein to Stephen Hawking, some of the greatest minds in history have tackled the problem and made spectacular breakthroughs, but through it all, the paradox of motion remains.

The Complete Idiot's Guide to Game Theory


Edward C. Rosenthal - 2005
    It is based on the idea that everyone acts competitively and in his own best interest. With the help of mathematical models, it is possible to anticipate the actions of others in nearly all life's enterprises. This book includes down-to-earth examples and solutions, as well as charts and illustrations designed to help teach the concept. In The Complete Idiot's Guide® to Game Theory, Dr. Edward C. Rosenthal makes it easy to understand game theory with insights into:? The history of the disciple made popular by John Nash, the mathematician dramatized in the film A Beautiful Mind? The role of social behavior and psychology in this amazing discipline? How important game theory has become in our society and why

Four Colors Suffice: How the Map Problem Was Solved


Robin J. Wilson - 2002
    This is the amazing story of how the "map problem" was solved.The problem posed in the letter came from a former student: What is the least possible number of colors needed to fill in any map (real or invented) so that neighboring counties are always colored differently? This deceptively simple question was of minimal interest to cartographers, who saw little need to limit how many colors they used. But the problem set off a frenzy among professional mathematicians and amateur problem solvers, among them Lewis Carroll, an astronomer, a botanist, an obsessive golfer, the Bishop of London, a man who set his watch only once a year, a California traffic cop, and a bridegroom who spent his honeymoon coloring maps. In their pursuit of the solution, mathematicians painted maps on doughnuts and horseshoes and played with patterned soccer balls and the great rhombicuboctahedron. It would be more than one hundred years (and countless colored maps) later before the result was finally established. Even then, difficult questions remained, and the intricate solution--which involved no fewer than 1,200 hours of computer time--was greeted with as much dismay as enthusiasm.Providing a clear and elegant explanation of the problem and the proof, Robin Wilson tells how a seemingly innocuous question baffled great minds and stimulated exciting mathematics with far-flung applications. This is the entertaining story of those who failed to prove, and those who ultimately did prove, that four colors do indeed suffice to color any map.

The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth


Paul Hoffman - 1998
    Based on a National Magazine Award-winning article, this masterful biography of Hungarian-born Paul Erdos is both a vivid portrait of an eccentric genius and a layman's guide to some of this century's most startling mathematical discoveries.