Quantum Field Theory: A Modern Introduction International Student Edition


Michio Kaku - 1993
    It includes discussions of topics that have become vital to a modern treatment of GFT, such as critical phenomena, lattice gauge theory, supersymmetry, quantum gravity, supergravity, and superstrings.

Modern abc of physics class 11


ABc of physics
    Pattern. To Provide clarity of the subject, the whole text is studded with The Jargon, Key point, Watch out and Self-test Question Window to Formula forms a new feature of the present revised edition. It contains a direct and simple formula based Numerical Problem, which will tell the students as to how the formula derived in an article is to be used to solve the problem. The article work in each chapter of unit is coupled with well graded and carefully selected Solved Numerical Problems. These Solved Numerical Problems have been categorized into two Parts. I from Board Examinations and II from Competitive Engineering Examinations, such as I.I.T., Roorkee and I.S.M., Dhanbad. Many such problems have been provided with solutions by adopting a novel technique in the form of Thought Process.

Universe on A T-Shirt: The Quest for the Theory of Everything


Dan Falk - 2002
    - This is the best kind of popular science: informed, impassioned, and highly accessible.- Compare it to Stephen Hawking's The Universe in a Nutshell, but broader in scope and much more readable.- A crossover for the Young Adult market, now in the perfect format.

The Ghost in the Atom: A Discussion of the Mysteries of Quantum Physics


Paul C.W. Davies - 1986
    Niels Bohr's dictum bears witness to the bewildering impact of quantum theory, flying in the face of classical physics and dramatically transforming scientists' outlook on our relationship with the material world. In this book Paul Davies interviews eight physicists involved in debating and testing the theory, with radically different views of its significance.

Introduction to Special Relativity


Robert Resnick - 1968
    Professor Resnick presents a fundamental and unified development of the subject with unusually clear discussions of the aspects that usually trouble beginners. He includes, for example, a section on the common sense of relativity. His presentation is lively and interspersed with historical, philosophical and special topics (such as the twin paradox) that will arouse and hold the reader's interest. You'll find many unique features that help you grasp the material, such as worked-out examples, summary tables, thought questions and a wealth of excellent problems. The emphasis throughout the book is physical. The experimental background, experimental confirmation of predictions, and the physical interpretation of principles are stressed. The book treats relativistic kinematics, relativistic dynamics, and relativity and electromagnetism and contains special appendices on the geometric representation of space-time and on general relativity. Its organization permits an instructor to vary the length and depth of his treatment and to use the book either with or following classical physics. These features make it an ideal companion for introductory course

Einstein for Everyone


Robert L. Piccioni - 2010
    Nor do you need to be a great scientist to appreciate the exciting discoveries and intriguing mysteries of our universe. Dr. Robert piccioni brings the excitement of modern scientific discoveries to general audiences. He makes the key facts and concepts understandable without "dumbing" them down. He presents them in a friendly, conversational manner and includes many personal anecdotes about the people behind the science. With 33 images and over 100 graphics, this book explains the real science behind the headlines and sound bites. Learn all about:our universe: how big? how old? what came before?the big bang, black holes and supernovaequantum mechanics and uncertaintyhow the immense and the minute are connectedwhat is special about general relativityhow mankind can become earth's best friend

Schrodinger's Rabbits: The Many Worlds of Quantum


Colin Bruce - 2004
    But recent technological advances have made the question both practical and urgent. A brilliantly imaginative group of physicists at Oxford University have risen to the challenge. This is their story. At long last, there is a sensible way to think about quantum mechanics. The new view abolishes the need to believe in randomness, long-range spooky forces, or conscious observers with mysterious powers to collapse cats into a state of life or death. But the new understanding comes at a price: we must accept that we live in a multiverse wherein countless versions of reality unfold side-by-side. The philosophical and personal consequences of this are awe-inspiring.The new interpretation has allowed imaginative physicists to conceive of wonderful new technologies: measuring devices that effectively share information between worlds and computers that can borrow the power of other worlds to perform calculations. Step by step, the problems initially associated with the original many-worlds formulation have been addressed and answered so that a clear but startling new picture has emerged.Just as Copenhagen was the centre of quantum discussion a lifetime ago, so Oxford has been the epicenter of the modern debate, with such figures as Roger Penrose and Anton Zeilinger fighting for single-world views, and David Deutsch, Lev Vaidman and a host of others for many-worlds.An independent physicist living in Oxford, Bruce has had a ringside seat to the debate. In his capable hands, we understand why the initially fantastic sounding many-worlds view is not only a useful way to look at things, but logically compelling. Parallel worlds are as real as the distant galaxies detected by the Hubble Space Telescope, even though the evidence for their existence may consist only of a few photons.

How The Universe Will End


Brian Cox - 2012
    

Frequently Asked Questions about the Universe


Jorge Cham - 2021
    --Carlo Rovelli, author of Seven Brief Lessons on Physics and Helgoland You've got questions: about space, time, gravity, and the odds of meeting your older self inside a wormhole. All the answers you need are right here.As a species, we may not agree on much, but one thing brings us all together: a need to know. We all wonder, and deep down we all have the same big questions. Why can't I travel back in time? Where did the universe come from? What's inside a black hole? Can I rearrange the particles in my cat and turn it into a dog?Researcher-turned-cartoonist Jorge Cham and physics professor Daniel Whiteson are experts at explaining science in ways we can all understand, in their books and on their popular podcast, Daniel and Jorge Explain the Universe. With their signature blend of humor and oh-now-I-get-it clarity, Jorge and Daniel offer short, accessible, and lighthearted answers to some of the most common, most outrageous, and most profound questions about the universe they've received.This witty, entertaining, and fully illustrated book is an essential troubleshooting guide for the perplexing aspects of reality, big and small, from the invisible particles that make up your body to the identical version of you currently reading this exact sentence in the corner of some other galaxy. If the universe came with an FAQ, this would be it.

Destination Mars: The Story of Our Quest to Conquer the Red Planet


Andrew May - 2017
    Half a century later, only robots have been to the Red Planet and our astronauts rarely venture beyond Earth orbit.Now Mars is back With everyone from Elon Musk to Ridley Scott and Donald Trump talking about it, interplanetary exploration is back on the agenda and Mars is once again the prime destination for future human expansion and colonisation. In Destination Mars, astrophysicist and science writer Andrew May traces the history of our fascination with the Red Planet and explores the science upon which a crewed mission would be based, from assembling a spacecraft in Earth orbit to surviving solar storms. With expert insight, he analyses the new space race and assesses what the future holds for human life on Mars.

The Singular Universe and the Reality of Time: A Proposal in Natural Philosophy


Roberto Mangabeira Unger - 2014
    The more we discover, the more puzzling the universe appears to be. How and why are the laws of nature what they are? A philosopher and a physicist, world-renowned for their radical ideas in their fields, argue for a revolution. To keep cosmology scientific, we must replace the old view in which the universe is governed by immutable laws by a new one in which laws evolve. Then we can hope to explain them. The revolution that Roberto Mangabeira Unger and Lee Smolin propose relies on three central ideas. There is only one universe at a time. Time is real: everything in the structure and regularities of nature changes sooner or later. Mathematics, which has trouble with time, is not the oracle of nature and the prophet of science; it is simply a tool with great power and immense limitations. The argument is readily accessible to non-scientists as well as to the physicists and cosmologists whom it challenges.

A Question of Time: The Ultimate Paradox


Scientific American - 2012
    

Brief History of the Philosophy of Time


Adrian Bardon - 2013
    Bardon employs helpful illustrations and keeps technical language to a minimum in bringing the resources of over 2500 years of philosophy and science to bear on some of humanity's most fundamental and enduring questions.

The Philosophy of Space and Time


Hans Reichenbach - 1957
    A brilliantly clear and penetrating exposition of developments in physical science and mathematics brought about by the advent of non-Euclidean geometries, including in-depth coverage of the foundations of geometry, the theory of time, Einstein's theory of relativity and its consequences, other key topics.

Quantum Physics: What Everyone Needs to Know®


Michael G. Raymer - 2017
    However, once their predictions were compared to the results of experiments in the real world, it became clear that the principles of classical physics and mechanics were far from capable of explaining phenomena on the atomic scale. With this realization came the advent of quantum physics, one of the most important intellectual movements in human history. Today, quantum physics is everywhere: it explains how our computers work, how lasers transmit information across the Internet, and allows scientists to predict accurately the behavior of nearly every particle in nature. Its application continues to be fundamental in the investigation of the most expansive questions related to our world and the universe.However, while the field and principles of quantum physics are known to have nearly limitless applications, the fundamental reasons why this is the case are far less understood. In Quantum Physics: What Everyone Needs to Know, quantum physicist Michael G. Raymer distills the basic principles of such an abstract field, and addresses the many ways quantum physics is a key factor in today's science and beyond. The book tackles questions as broad as the meaning of quantum entanglement and as specific and timely as why governments worldwide are spending billions of dollars developing quantum technology research. Raymer's list of topics is diverse, and showcases the sheer range of questions and ideas in which quantum physics is involved. From applications like data encryption and quantum computing to principles and concepts like "quantum nonlocality" and Heisenberg's uncertainty principle, Quantum Physics: What Everyone Needs to Know is a wide-reaching introduction to a nearly ubiquitous scientific topic.