Book picks similar to
Turbulence: The Legacy of A. N. Kolmogorov by Uriel Frisch
physics
science
mathematics
non-fiction
The Computer and the Brain
John von Neumann - 1958
This work represents the views of a mathematician on the analogies between computing machines and the living human brain.
Chaos and Fractals: New Frontiers of Science
Heinz-Otto Peitgen - 1992
At the time we were hoping that our approach of writing a book which would be both accessible without mathematical sophistication and portray these exiting new fields in an authentic manner would find an audience. Now we know it did. We know from many reviews and personal letters that the book is used in a wide range of ways: researchers use it to acquaint themselves, teachers use it in college and university courses, students use it for background reading, and there is also a substantial audience of lay people who just want to know what chaos and fractals are about. Every book that is somewhat technical in nature is likely to have a number of misprints and errors in its first edition. Some of these were caught and brought to our attention by our readers. One of them, Hermann Flaschka, deserves to be thanked in particular for his suggestions and improvements. This second edition has several changes. We have taken out the two appendices from the firstedition. At the time of the first edition Yuval Fishers contribution, which we published as an appendix was probably the first complete expository account on fractal image compression. Meanwhile, Yuvals book Fractal Image Compression: Theory and Application appeared and is now the publication to refer to.
The Third Culture: Beyond the Scientific Revolution
John Brockman - 1995
P. Snow, in a now famous essay, wrote about the polarization of the "two cultures" -- literary intellectuals on the one hand, and scientists on the other. Although he hoped for the emergence of a "third culture" that would bridge the gap, it is only recently that science has changed the intellectual landscape. Brockman's thesis that science is emerging as the intellectual center of our society is brought to life vividly in The Third Culture, which weaves together the voices of some of today's most influential scientific figures, including: Stephen Jay Gould and Richard Dawkins on the implications of evolution Steven Pinker, Marvin Minsky, Daniel C. Dennett, and Roger Penrose on how the mind works Murray Gell-Mann and Stuart Kauffman on the new sciences of complexity The Third Culture is an honest picture of science in action. It is at once stimulating, challenging, and riveting.
The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life Plus the Secrets of Enigma
Alan Turing - 2004
In 1935, aged 22, he developed the mathematical theory upon which all subsequent stored-program digital computers are modeled.At the outbreak of hostilities with Germany in September 1939, he joined the Government Codebreaking team at Bletchley Park, Buckinghamshire and played a crucial role in deciphering Engima, the code used by the German armed forces to protect their radio communications. Turing's work on the versionof Enigma used by the German navy was vital to the battle for supremacy in the North Atlantic. He also contributed to the attack on the cyphers known as Fish, which were used by the German High Command for the encryption of signals during the latter part of the war. His contribution helped toshorten the war in Europe by an estimated two years.After the war, his theoretical work led to the development of Britain's first computers at the National Physical Laboratory and the Royal Society Computing Machine Laboratory at Manchester University.Turing was also a founding father of modern cognitive science, theorizing that the cortex at birth is an unorganized machine which through training becomes organized into a universal machine or something like it. He went on to develop the use of computers to model biological growth, launchingthe discipline now referred to as Artificial Life.The papers in this book are the key works for understanding Turing's phenomenal contribution across all these fields. The collection includes Turing's declassified wartime Treatise on the Enigma; letters from Turing to Churchill and to codebreakers; lectures, papers, and broadcasts which opened upthe concept of AI and its implications; and the paper which formed the genesis of the investigation of Artifical Life.
Gödel, Escher, Bach: An Eternal Golden Braid
Douglas R. Hofstadter - 1979
However, according to Hofstadter, the formal system that underlies all mental activity transcends the system that supports it. If life can grow out of the formal chemical substrate of the cell, if consciousness can emerge out of a formal system of firing neurons, then so too will computers attain human intelligence. Gödel, Escher, Bach is a wonderful exploration of fascinating ideas at the heart of cognitive science: meaning, reduction, recursion, and much more.
Math with Bad Drawings
Ben Orlin - 2018
In MATH WITH BAD DRAWINGS, Ben Orlin answers math's three big questions: Why do I need to learn this? When am I ever going to use it? Why is it so hard? The answers come in various forms-cartoons, drawings, jokes, and the stories and insights of an empathetic teacher who believes that math should belong to everyone.Eschewing the tired old curriculum that begins in the wading pool of addition and subtraction and progresses to the shark infested waters of calculus (AKA the Great Weed Out Course), Orlin instead shows us how to think like a mathematician by teaching us a new game of Tic-Tac-Toe, how to understand an economic crisis by rolling a pair of dice, and the mathematical reason why you should never buy a second lottery ticket. Every example in the book is illustrated with his trademark "bad drawings," which convey both his humor and his message with perfect pitch and clarity. Organized by unconventional but compelling topics such as "Statistics: The Fine Art of Honest Lying," "Design: The Geometry of Stuff That Works," and "Probability: The Mathematics of Maybe," MATH WITH BAD DRAWINGS is a perfect read for fans of illustrated popular science.
Hilbert
Constance Bowman Reid - 1970
These noteworthy accounts of the lives of David Hilbert and Richard Courant are closely related: Courant's story is, in many ways, seen as the sequel to the story of Hilbert. Originally published to great acclaim, both books explore the dramatic scientific history expressed in the lives of these two great scientists and described in the lively, nontechnical writing style of Contance Reid.
Engineering Thermodynamics: A Computer Approach (Si Units Version) (Revised)
R.K. Rajput - 2009
Pure Substances, The First And Second Laws, Gases, Psychrometrics, The Vapor, Gas And Refrigeration Cycles, Heat Transfer, Compressible Flow, Chemical Reactions, Fuels, And More Are Presented In Detail And Enhanced With Practical Applications. This Version Presents The Material Using SI Units And Has Ample Material On SI Conversion, Steam Tables, And A Mollier Diagram. A CD-ROM, Included With The Print Version Of The Text, Includes A Fully Functional Version Of Quickfield (Widely Used In Industry), As Well As Numerous Demonstrations And Simulations With MATLAB, And Other Third Party Software.
God Created the Integers: The Mathematical Breakthroughs That Changed History
Stephen Hawking - 2005
In this collection of landmark mathematical works, editor Stephen Hawking has assembled the greatest feats humans have ever accomplished using just numbers and their brains.
Gravity: An Introduction to Einstein's General Relativity
James B. Hartle - 2002
Using a "physics first" approach to the subject, renowned relativist James B. Hartle provides a fluent and accessible introduction that uses a minimum of new mathematics and is illustrated with a wealth of exciting applications. KEY TOPICS: The emphasis is on the exciting phenomena of gravitational physics and the growing connection between theory and observation. The Global Positioning System, black holes, X-ray sources, pulsars, quasars, gravitational waves, the Big Bang, and the large scale structure of the universe are used to illustrate the widespread role of how general relativity describes a wealth of everyday and exotic phenomena. MARKET: For anyone interested in physics or general relativity.
Alice in Quantumland: An Allegory of Quantum Physics
Robert Gilmore - 1994
Through the allegory of Alice's adventures and encounters, Gilmore makes the essential features of the quantum world clear and accessible. It is a thrilling introduction to some essential, often difficult-to-grasp concepts about the world we inhabit.
Information: A Very Short Introduction
Luciano Floridi - 2010
In this Very Short Introduction, one of the world's leading authorities on the philosophy of information and on information ethics, Luciano Floridi, offers an illuminating exploration of information as it relates to both philosophy and science. He discusses the roots of the concept of information in mathematics and science, and considers the role of information in several fields, including biology. Floridi also discusses concepts such as "Infoglut" (too much information to process) and the emergence of an information society, and he addresses the nature of information as a communication process and its place as a physical phenomenon. Perhaps more important, he explores information's meaning and value, and ends by considering the broader social and ethical issues relating to information, including problems surrounding accessibility, privacy, ownership, copyright, and open source. This book helps us understand the true meaning of the concept and how it can be used to understand our world.About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundreds of key topics, from philosophy to Freud, quantum theory to Islam.
Turing's Cathedral: The Origins of the Digital Universe
George Dyson - 2012
In Turing’s Cathedral, George Dyson focuses on a small group of men and women, led by John von Neumann at the Institute for Advanced Study in Princeton, New Jersey, who built one of the first computers to realize Alan Turing’s vision of a Universal Machine. Their work would break the distinction between numbers that mean things and numbers that do things—and our universe would never be the same. Using five kilobytes of memory (the amount allocated to displaying the cursor on a computer desktop of today), they achieved unprecedented success in both weather prediction and nuclear weapons design, while tackling, in their spare time, problems ranging from the evolution of viruses to the evolution of stars. Dyson’s account, both historic and prophetic, sheds important new light on how the digital universe exploded in the aftermath of World War II. The proliferation of both codes and machines was paralleled by two historic developments: the decoding of self-replicating sequences in biology and the invention of the hydrogen bomb. It’s no coincidence that the most destructive and the most constructive of human inventions appeared at exactly the same time. How did code take over the world? In retracing how Alan Turing’s one-dimensional model became John von Neumann’s two-dimensional implementation, Turing’s Cathedral offers a series of provocative suggestions as to where the digital universe, now fully three-dimensional, may be heading next.
Differential Equations
Richard Bronson - 2010
This supplement will cater to the requirements of students by covering all important topics of Laplace transformation, Matrices, Numerical Methods. Further enhanced is its usability by inclusion of chapter end questions in sync with student needs. Table of contents: 1. Basic Concepts 2. An Introduction to Modeling and Qualitative Methods 3. Classification of First-Order Differential Equations 4. Separable First-Order Differential Equations 5. Exact First-order Differential Equations 6. Linear First-Order Differential Equations 7. Applications of First-Order Differential Equations 8. Linear Differential Equations: Theory of Solutions 9. Second-Order Linear Homogeneous Differential Equations with Constant Coefficients 10. nth-Order Linear Homogeneous Differential Equations with Constant Coefficients 11. The Method of Undetermined Coefficients 12. Variation of Parameters 13. Initial-Value Problems for Linear Differential Equations 14. Applications of Second-Order Linear Differential Equations 15. Matrices 16. eAt 17. Reduction of Linear Differential Equations to a System of First-Order Equations 18. Existence and Uniqueness of Solutions 19. Graphical and Numerical Methods for Solving First-Order Differential Equations 20. Further Numerical Methods for Solving First-Order Differential Equations 21. Numerical Methods for Solving Second-Order Differential Equations Via Systems 22. The Laplace Transform 23. Inverse Laplace Transforms 24. Convolutions and the Unit Step Function 25. Solutions of Linear Differential Equations with Constant Coefficients by Laplace Transforms 26. Solutions of Linear?Systems by Laplace Transforms 27. Solutions of Linear Differential Equations with Constant Coefficients by Matrix Methods 28. Power Series Solutions of Linear Differential Equations with Variable Coefficients 29. Special Functions 30. Series Solutions N