Book picks similar to
An Introduction to Genetic Engineering by Desmond S.T. Nicholl
science
biology
genetics
textbooks
Bioinformatics For Dummies
Jean-Michel Claverie - 2003
This easy-to-follow guide leads you step by step through every bioinformatics task that can be done over the Internet. Forget long equations, computer-geek gibberish, and installing bulky programs that slow down your computer. You'll be amazed at all the things you can accomplish just by logging on and following these trusty directions. You get the tools you need to:Analyze all types of sequences Use all types of databases Work with DNA and protein sequences Conduct similarity searches Build a multiple sequence alignment Edit and publish alignments Visualize protein 3-D structures Construct phylogenetic trees This up-to-date second edition includes newly created and popular databases and Internet programs as well as multiple new genomes. It provides tips for using servers and places to seek resources to find out about what's going on in the bioinformatics world. Bioinformatics For Dummies will show you how to get the most out of your PC and the right Web tools so you'll be searching databases and analyzing sequences like a pro!
iGenetics: A Molecular Approach
Peter J. Russell - 2001
Although molecular topics are presented first, instructors can assign the chapters in any sequence. Pedagogical features such as chapter-opening “Key Questions” and strategically placed “Keynotes” help readers to efficiently master genetic concepts. The Genetics Place Companion Website contains interactive iActivities and narrated animations that help readers visualize and understand processes and concepts that are illustrated in the book. Genetics: An Introduction, DNA: The Genetic Material, DNA Replication, Gene Control of Proteins, Gene Expression: Transcription,Gene Expression: Translation, DNA Mutation, DNA Repair, and Transposable Elements, Structural Genomics, Functional and Comparative Genomics, Recombinant DNA Technology, Mendelian Genetics, Chromosomal Basis of Inheritance, Extensions of and Deviations from Mendelian Genetic Principles, Genetic Mapping in Eukaryotes, Genetics of Bacteria and Bacteriophages, Variations in Chromosome Structure and Number, Regulation of Gene Expression in Bacteria and Bacteriophages, Regulation of Gene Expression in Eukaryotes, Genetic Analysis of Development, Genetics of Cancer, Quantitative Genetics, Population Genetics, Molecular Evolution Intended for those interested in learning the basics of genetics
Turing's Cathedral: The Origins of the Digital Universe
George Dyson - 2012
In Turing’s Cathedral, George Dyson focuses on a small group of men and women, led by John von Neumann at the Institute for Advanced Study in Princeton, New Jersey, who built one of the first computers to realize Alan Turing’s vision of a Universal Machine. Their work would break the distinction between numbers that mean things and numbers that do things—and our universe would never be the same. Using five kilobytes of memory (the amount allocated to displaying the cursor on a computer desktop of today), they achieved unprecedented success in both weather prediction and nuclear weapons design, while tackling, in their spare time, problems ranging from the evolution of viruses to the evolution of stars. Dyson’s account, both historic and prophetic, sheds important new light on how the digital universe exploded in the aftermath of World War II. The proliferation of both codes and machines was paralleled by two historic developments: the decoding of self-replicating sequences in biology and the invention of the hydrogen bomb. It’s no coincidence that the most destructive and the most constructive of human inventions appeared at exactly the same time. How did code take over the world? In retracing how Alan Turing’s one-dimensional model became John von Neumann’s two-dimensional implementation, Turing’s Cathedral offers a series of provocative suggestions as to where the digital universe, now fully three-dimensional, may be heading next.
Letters to a Young Scientist
Edward O. Wilson - 2013
Wilson has distilled sixty years of teaching into a book for students, young and old. Reflecting on his coming-of-age in the South as a Boy Scout and a lover of ants and butterflies, Wilson threads these twenty-one letters, each richly illustrated, with autobiographical anecdotes that illuminate his career--both his successes and his failures--and his motivations for becoming a biologist. At a time in human history when our survival is more than ever linked to our understanding of science, Wilson insists that success in the sciences does not depend on mathematical skill, but rather a passion for finding a problem and solving it. From the collapse of stars to the exploration of rain forests and the oceans' depths, Wilson instills a love of the innate creativity of science and a respect for the human being's modest place in the planet's ecosystem in his readers.
Life on the Edge: The Coming of Age of Quantum Biology
Johnjoe McFadden - 2014
Life remains the only way to make life. Are we still missing a vital ingredient in its creation? Like Richard Dawkins' The Selfish Gene, which provided a new perspective on how evolution works, Life on the Edge alters our understanding of our world's fundamental dynamics. Bringing together first-hand experience at the cutting edge of science with unparalleled gifts of explanation, Jim Al-Khalili and Johnjoe Macfadden reveal that missing ingredient to be quantum mechanics; the phenomena that lie at the heart of this most mysterious of sciences. Drawing on recent ground-breaking experiments around the world, each chapter in Life on the Edge engages by illustrating one of life's puzzles: How do migrating birds know where to go? How do we really smell the scent of a rose? How do our genes copy themselves with such precision? Life on the Edge accessibly reveals how quantum mechanics can answer these probing questions of the universe. Guiding the reader through the rapidly unfolding discoveries of the last few years, Al-Khalili and McFadden communicate the excitement of the explosive new field of quantum biology and its potentially revolutionary applications, while offering insights into the biggest puzzle of all: what is life? As they brilliantly demonstrate in these groundbreaking pages, life exists on the quantum edge.
A New Kind of Science
Stephen Wolfram - 1997
Wolfram lets the world see his work in A New Kind of Science, a gorgeous, 1,280-page tome more than a decade in the making. With patience, insight, and self-confidence to spare, Wolfram outlines a fundamental new way of modeling complex systems. On the frontier of complexity science since he was a boy, Wolfram is a champion of cellular automata--256 "programs" governed by simple nonmathematical rules. He points out that even the most complex equations fail to accurately model biological systems, but the simplest cellular automata can produce results straight out of nature--tree branches, stream eddies, and leopard spots, for instance. The graphics in A New Kind of Science show striking resemblance to the patterns we see in nature every day. Wolfram wrote the book in a distinct style meant to make it easy to read, even for nontechies; a basic familiarity with logic is helpful but not essential. Readers will find themselves swept away by the elegant simplicity of Wolfram's ideas and the accidental artistry of the cellular automaton models. Whether or not Wolfram's revolution ultimately gives us the keys to the universe, his new science is absolutely awe-inspiring. --Therese Littleton
The Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos
Brian Greene - 2011
Everything. Yet, in recent years discoveries in physics and cosmology have led a number of scientists to conclude that our universe may be one among many. With crystal-clear prose and inspired use of analogy, Brian Greene shows how a range of different “multiverse” proposals emerges from theories developed to explain the most refined observations of both subatomic particles and the dark depths of space: a multiverse in which you have an infinite number of doppelgängers, each reading this sentence in a distant universe; a multiverse comprising a vast ocean of bubble universes, of which ours is but one; a multiverse that endlessly cycles through time, or one that might be hovering millimeters away yet remains invisible; another in which every possibility allowed by quantum physics is brought to life. Or, perhaps strangest of all, a multiverse made purely of math.Greene, one of our foremost physicists and science writers, takes us on a captivating exploration of these parallel worlds and reveals how much of reality’s true nature may be deeply hidden within them. And, with his unrivaled ability to make the most challenging of material accessible and entertaining, Greene tackles the core question: How can fundamental science progress if great swaths of reality lie beyond our reach?Sparked by Greene’s trademark wit and precision, The Hidden Reality is at once a far-reaching survey of cutting-edge physics and a remarkable journey to the very edge of reality—a journey grounded firmly in science and limited only by our imagination.
Essentials of Statistics
Mario F. Triola - 2001
What do you want to learn?
Discover the Power of Real Data
Mario Triola remains the market-leading statistics author by engaging readers of each edition with an abundance of real data in the examples, applications, and exercises. Statistics is all around us, and Triola helps readers understand how this course will impact their lives beyond the classroom–as consumers, citizens, and professionals. Essentials of Statistics, Fourth Edition is a more economical and streamlined introductory statistics text. Drawn from Triola’s Elementary Statistics, Eleventh Edition, this text provides the same student-friendly approach with material presented in a real-world context. The Fourth Edition contains more than 1,700 exercises (18% more than the previous edition); 89% are new and 81% use real data. The book also contains hundreds of examples; 86% are new and 92% use real data. By analyzing real data, readers are able to connect abstract concepts to the world at large, teaching them to think statistically and apply their conceptual understanding using the same methods that professional statisticians employ. Datasets and other resources (where applicable) for this book are available here.
Understanding Genetics: DNA, Genes, And Their Real World Applications
David E. Sadava - 2008
Our Inheritance 2. Mendel and Genes 3. Genes and Chromosomes 4. The Search for the GeneDNA 5. DNA Structure and Replication 6. DNA Expression in Proteins 7. Genes, Enzymes, and Metabolism 8. From DNA to Protein 9. Genomes 10. Manipulating GenesRecombinant DNA 11. Isolating Genes and DNA 12. BiotechnologyGenetic Engineering 13. Biotechnology and the Environment 14. Manipulating DNA by PCR and Other Methods 15. DNA in IdentificationForensics 16. DNA and Evolution 17. DNA and Human Evolution 18. Molecular MedicineGenetic Screening 19. Molecular MedicineThe Immune System 20. Molecular MedicineCancer 21. Molecular MedicineGene Therapy 22. Molecular MedicineCloning and Stem Cells 23. Genetics and Agriculture 24. Biotechnology and Agriculture
Molecular & Cell Biology For Dummies
Rene Fester Kratz - 2009
You discover how fundamental principles and concepts relate to everyday life. Plus, you get plenty of study tips to improve your grades and score higher on exams! Explore the world of the cell — take a tour inside the structure and function of cells and see how viruses attack and destroy them Understand the stuff of life (molecules) — get up to speed on the structure of atoms, types of bonds, carbohydrates, proteins, DNA, RNA, and lipids Watch as cells function and reproduce — see how cells communicate, obtain matter and energy, and copy themselves for growth, repair, and reproduction Make sense of genetics — learn how parental cells organize their DNA during sexual reproduction and how scientists can predict inheritance patterns Decode a cell's underlying programming — examine how DNA is read by cells, how it determines the traits of organisms, and how it's regulated by the cell Harness the power of DNA — discover how scientists use molecular biology to explore genomes and solve current world problems Open the book and find: Easy-to-follow explanations of key topics The life of a cell — what it needs to survive and reproduce Why molecules are so vital to cells Rules that govern cell behavior Laws of thermodynamics and cellular work The principles of Mendelian genetics Useful Web sites Important events in the development of DNA technology Ten great ways to improve your biology grade
The Void
Frank Close - 2007
Readers will find an enlightening history of the vacuum: how the efforts to make a better vacuum led to the discovery of the electron; the understanding that the vacuum is filled with fields; the ideas of Newton, Mach, and Einstein on the nature of space and time; the mysterious aether and how Einstein did away with it; and the latest ideas that the vacuum is filled with the Higgs field. The story ranges from the absolute zero of temperature and the seething vacuum of virtual particles and anti-particles that fills space, to the extreme heat and energy of the early universe. It compares the ways that substances change from gas to liquid and solid with the way that the vacuum of our universe has changed as the temperature dropped following the Big Bang. It covers modern ideas that there may be more dimensions to the void than those that we currently are aware of and even that our universe is but one in a multiverse. The Void takes us inside a field of science that may ultimately provide answers to some of cosmology's most fundamental questions: what lies outside the universe, and, if there was once nothing, then how did the universe begin?
The Constants of Nature: The Numbers That Encode the Deepest Secrets of the Universe
John D. Barrow - 2002
In The Constants of Nature, Cambridge Professor and bestselling author John D.Barrow takes us on an exploration of these governing principles. Drawing on physicists such as Einstein and Planck, Barrow illustrates with stunning clarity our dependence on the steadfastness of these principles. But he also suggests that the basic forces may have been radically different during the universe’s infancy, and suggests that they may continue a deeply hidden evolution. Perhaps most tantalizingly, Barrow theorizes about the realities that might one day be found in a universe with different parameters than our own.
Gamma: Exploring Euler's Constant
Julian Havil - 2003
Following closely behind is y, or gamma, a constant that arises in many mathematical areas yet maintains a profound sense of mystery. In a tantalizing blend of history and mathematics, Julian Havil takes the reader on a journey through logarithms and the harmonic series, the two defining elements of gamma, toward the first account of gamma's place in mathematics. Introduced by the Swiss mathematician Leonhard Euler (1707-1783), who figures prominently in this book, gamma is defined as the limit of the sum of 1 + 1/2 + 1/3 + . . . Up to 1/n, minus the natural logarithm of n--the numerical value being 0.5772156. . . . But unlike its more celebrated colleagues π and e, the exact nature of gamma remains a mystery--we don't even know if gamma can be expressed as a fraction. Among the numerous topics that arise during this historical odyssey into fundamental mathematical ideas are the Prime Number Theorem and the most important open problem in mathematics today--the Riemann Hypothesis (though no proof of either is offered!). Sure to be popular with not only students and instructors but all math aficionados, Gamma takes us through countries, centuries, lives, and works, unfolding along the way the stories of some remarkable mathematics from some remarkable mathematicians.-- "Notices of the American Mathematical Society"
The Tree: A Natural History of What Trees Are, How They Live & Why They Matter
Colin Tudge - 2005
There are Douglas firs as tall as skyscrapers, and a banyan tree in Calcutta as big as a football field.From the tallest to the smallest, trees inspire wonder in all of us, and in The Tree, Colin Tudge travels around the world—throughout the United States, the Costa Rican rain forest, Panama and Brazil, India, New Zealand, China, and most of Europe—bringing to life stories and facts about the trees around us: how they grow old, how they eat and reproduce, how they talk to one another (and they do), and why they came to exist in the first place. He considers the pitfalls of being tall; the things that trees produce, from nuts and rubber to wood; and even the complicated debt that we as humans owe them.Tudge takes us to the Amazon in flood, when the water is deep enough to submerge the forest entirely and fish feed on fruit while river dolphins race through the canopy. He explains the “memory” of a tree: how those that have been shaken by wind grow thicker and sturdier, while those attacked by pests grow smaller leaves the following year; and reveals how it is that the same trees found in the United States are also native to China (but not Europe).From tiny saplings to centuries-old redwoods and desert palms, from the backyards of the American heartland to the rain forests of the Amazon and the bamboo forests, Colin Tudge takes the reader on a journey through history and illuminates our ever-present but often ignored companions. A blend of history, science, philosophy, and environmentalism, The Tree is an engaging and elegant look at the life of the tree and what modern research tells us about their future.
How To: Absurd Scientific Advice for Common Real-World Problems
Randall Munroe - 2019
How To is a guide to the third kind of approach. It's full of highly impractical advice for everything from landing a plane to digging a hole.Bestselling author and cartoonist Randall Munroe explains how to predict the weather by analyzing the pixels of your Facebook photos. He teaches you how to tell if you're a baby boomer or a 90's kid by measuring the radioactivity of your teeth. He offers tips for taking a selfie with a telescope, crossing a river by boiling it, and powering your house by destroying the fabric of space-time. And if you want to get rid of the book once you're done with it, he walks you through your options for proper disposal, including dissolving it in the ocean, converting it to a vapor, using tectonic plates to subduct it into the Earth's mantle, or launching it into the Sun.By exploring the most complicated ways to do simple tasks, Munroe doesn't just make things difficult for himself and his readers. As he did so brilliantly in What If?, Munroe invites us to explore the most absurd reaches of the possible. Full of clever infographics and amusing illustrations, How To is a delightfully mind-bending way to better understand the science and technology underlying the things we do every day.