Time's Arrow and Archimedes' Point: New Directions for the Physics of Time


Huw Price - 1996
    Price begins with the mystery of the arrow of time. Why, for example, does disorder always increase, as required by the second law of thermodynamics? Price shows that, for over a century, most physicists have thought about these problems the wrong way. Misled by the human perspective from withintime, which distorts and exaggerates the differences between past and future, they have fallen victim to what Price calls the double standard fallacy: proposed explanations of the difference between the past and the future turn out to rely on a difference which has been slipped in at thebeginning, when the physicists themselves treat the past and future in different ways. To avoid this fallacy, Price argues, we need to overcome our natural tendency to think about the past and the future differently. We need to imagine a point outside time -- an Archimedean view from nowhen --from which to observe time in an unbiased way. Offering a lively criticism of many major modern physicists, including Richard Feynman and Stephen Hawking, Price shows that this fallacy remains common in physics today -- for example, when contemporary cosmologists theorize about the eventual fate of the universe. The big bang theory normallyassumes that the beginning and end of the universe will be very different. But if we are to avoid the double standard fallacy, we need to consider time symmetrically, and take seriously the possibility that the arrow of time may reverse when the universe recollapses into a big crunch. Price then turns to the greatest mystery of modern physics, the meaning of quantum theory. He argues that in missing the Archimedean viewpoint, modern physics has missed a radical and attractive solution to many of the apparent paradoxes of quantum physics. Many consequences of quantum theoryappear counterintuitive, such as Schrodinger's Cat, whose condition seems undetermined until observed, and Bell's Theorem, which suggests a spooky nonlocality, where events happening simultaneously in different places seem to affect each other directly. Price shows that these paradoxes can beavoided by allowing that at the quantum level the future does, indeed, affect the past. This demystifies nonlocality, and supports Einstein's unpopular intuition that quantum theory describes an objective world, existing independently of human observers: the Cat is alive or dead, even when nobodylooks. So interpreted, Price argues, quantum mechanics is simply the kind of theory we ought to have expected in microphysics -- from the symmetric standpoint.Time's Arrow and Archimedes' Point presents an innovative and controversial view of time and contemporary physics. In this exciting book, Price urges physicists, philosophers, and anyone who has ever pondered the mysteries of time to look at the world from the fresh perspective of Archimedes' Pointand gain a deeper understanding of ourselves, the universe around us, and our own place in time.

Readings in Ancient Greek Philosophy: From Thales to Aristotle


C.D.C. Reeve - 1995
    Republic is also featured in its entirety.

Meaning in History: The Theological Implications of the Philosophy of History


Karl Löwith - 1953
    Consequently, his view of history is confused. For centuries, the history of the Western world has been viewed from the Christian or classical standpoint—from a deep faith in the Kingdom of God or a belief in recurrent and eternal life-cycles. The modern mind, however, is neither Christian nor pagan—and its interpretations of history are Christian in derivation and anti-Christian in result. To develop this theory, Karl Löwith—beginning with the more accessible philosophies of history in the nineteenth and eighteenth centuries and working back to the Bible—analyzes the writings of outstanding historians both in antiquity and in Christian times. "A book of distinction and great importance. . . . The author is a master of philosophical interpretation, and each of his terse and substantial chapters has the balance of a work of art."—Helmut Kuhn, Journal of Philosophy

Equations of Eternity: Speculations on Consciousness, Meaning, and the Mathematical Rules That Orchestrate the Cosmos


David Darling - 1993
    However, it is one of the basic principles of quantum theory, the most widely accepted explanation of the subatomic world - and one of the fascinating subjects dealt with in Equations of Eternity.

The Character of Physical Law


Richard P. Feynman - 1964
    He maintains at the outset that the importance of a physical law isn't "how clever we are to have found it out, but...how clever nature is to pay attention to it" & tends his discussions toward a final exposition of the elegance & simplicity of all scientific laws. Rather than an essay on the most significant achievements in modern science, The Character of Physical Law is a statement of what is most remarkable in nature. His enlightened approach, wit & enthusiasm make this a memorable exposition of the scientist's craft. The Law of Gravitation is the principal example. Relating the details of its discovery & stressing its mathematical character, he uses it to demonstrate the essential interaction of mathematics & physics. He views mathematics as the key to any system of scientific laws, suggesting that if it were possible to fill out the structure of scientific theory completely, the result would be an integrated set of axioms. The principles of conservation, symmetry & time-irreversibility are then considered in relation to developments in classical & modern physics. In his final lecture he develops his own analysis of the process & future of scientific discovery. Like any set of oral reflections, The Character of Physical Law has value as a demonstration of a mind in action. The reader is particularly lucky in Feynman. One of the most eminent & imaginative modern physicists, he was Professor of Theoretical Physics at the California Institute of Technology until his death in 1988. He's best known for work on the quantum theory of the electromagnetic field, as well as for later research in the field of low-temperature physics. In 1954 he received the Albert Einstein Award for an "outstanding contribution to knowledge in mathematical & physical sciences"; in 1965 he was appointed to Foreign Membership in the Royal Society & was awarded the Nobel Prize.

The Clockwork Universe: Isaac Newton, the Royal Society, and the Birth of the Modern World


Edward Dolnick - 2011
    A meld of history and science, this book is a group portrait of some of the greatest minds who ever lived as they wrestled with nature’s most sweeping mysteries. The answers they uncovered still hold the key to how we understand the world.At the end of the seventeenth century—an age of religious wars, plague, and the Great Fire of London—when most people saw the world as falling apart, these earliest scientists saw a world of perfect order. They declared that, chaotic as it looked, the universe was in fact as intricate and perfectly regulated as a clock. This was the tail end of Shakespeare’s century, when the natural land the supernatural still twined around each other. Disease was a punishment ordained by God, astronomy had not yet broken free from astrology, and the sky was filled with omens. It was a time when little was known and everything was new. These brilliant, ambitious, curious men believed in angels, alchemy, and the devil, and they also believed that the universe followed precise, mathematical laws—-a contradiction that tormented them and changed the course of history.The Clockwork Universe is the fascinating and compelling story of the bewildered geniuses of the Royal Society, the men who made the modern world.

The Logical Leap: Induction in Physics


David Harriman - 2010
    Inspired by and expanding on a series of lectures presented by Leonard Peikoff, David Harriman presents a fascinating answer to the problem of induction-the epistemological question of how we can know the truth of inductive generalizations.Ayn Rand presented her revolutionary theory of concepts in her book Introduction to Objectivist Epistemology. As Dr. Peikoff subsequently explored the concept of induction, he sought out David Harriman, a physicist who had taught philosophy, for his expert knowledge of the scientific discovery process.Here, Harriman presents the result of a collaboration between scientist and philosopher. Beginning with a detailed discussion of the role of mathematics and experimentation in validating generalizations in physics-looking closely at the reasoning of scientists such as Galileo, Kepler, Newton, Lavoisier, and Maxwell-Harriman skillfully argues that the inductive method used in philosophy is in principle indistinguishable from the method used in physics.

The Canon: A Whirligig Tour of the Beautiful Basics of Science


Natalie Angier - 2007
    She draws on conversations with hundreds of the world's top scientists and on her own work as a Pulitzer Prize-winning writer for the New York Times to create a thoroughly entertaining guide to scientific literacy. Angier's gifts are on full display in The Canon, an ebullient celebration of science that stands to become a classic. The Canon is vital reading for anyone who wants to understand the great issues of our time -- from stem cells and bird flu to evolution and global warming. And it's for every parent who has ever panicked when a child asked how the earth was formed or what electricity is. Angier's sparkling prose and memorable metaphors bring the science to life, reigniting our own childhood delight in discovering how the world works. "Of course you should know about science," writes Angier, "for the same reason Dr. Seuss counsels his readers to sing with a Ying or play Ring the Gack: These things are fun and fun is good." The Canon is a joyride through the major scientific disciplines: physics, chemistry, biology, geology, and astronomy. Along the way, we learn what is actually happening when our ice cream melts or our coffee gets cold, what our liver cells do when we eat a caramel, why the horse is an example of evolution at work, and how we're all really made of stardust. It's Lewis Carroll meets Lewis Thomas -- a book that will enrapture, inspire, and enlighten.

Space-time and beyond : toward an explanation of the unexplainable


Bob Toben - 1975
    Captioned cartoon drawings offering an overview of universal order as they deal with various phenomena are combined with scientific commentary

The Road to Reality: A Complete Guide to the Laws of the Universe


Roger Penrose - 2004
    From the very first attempts by the Greeks to grapple with the complexities of our known world to the latest application of infinity in physics, The Road to Reality carefully explores the movement of the smallest atomic particles and reaches into the vastness of intergalactic space. Here, Penrose examines the mathematical foundations of the physical universe, exposing the underlying beauty of physics and giving us one the most important works in modern science writing.

The Greatest Story Ever Told—So Far: Why Are We Here?


Lawrence M. Krauss - 2017
    But more than this, there was gravity. After that, all hell broke loose… In A Universe from Nothing, Krauss revealed how our entire universe could arise from nothing. Now, he reveals what that something—reality—is. And, reality is not what we think or sense—it’s weird, wild, and counterintuitive; it’s hidden beneath everyday experience; and its inner workings seem even stranger than the idea that something can come from nothing. In a landmark, unprecedented work of scientific history, Krauss leads us to the furthest reaches of space and time, to scales so small they are invisible to microscopes, to the birth and rebirth of light, and into the natural forces that govern our existence. His unique blend of rigorous research and engaging storytelling invites us into the lives and minds of the remarkable, creative scientists who have helped to unravel the unexpected fabric of reality—with reason rather than superstition and dogma. Krauss has himself been an active participant in this effort, and he knows many of them well. The Greatest Story challenges us to re-envision ourselves and our place within the universe, as it appears that “God” does play dice with the universe. In the incisive style of his scintillating essays for The New Yorker, Krauss celebrates the greatest intellectual adventure ever undertaken—to understand why we are here in a universe where fact is stranger than fiction.

Quantum Enigma: Physics Encounters Consciousness


Bruce Rosenblum - 2006
    Can you believe that physical reality is created by our observation of it? Physicists were forced to this conclusion, the quantum enigma, by what they observed in their laboratories.Trying to understand the atom, physicists built quantum mechanics and found, to their embarrassment, that their theory intimately connects consciousness with the physical world. Quantum Enigma explores what that implies and why some founders of the theory became the foremost objectors to it. Schr�dinger showed that it absurdly allowed a cat to be in a superposition simultaneously dead and alive. Einstein derided the theory's spooky interactions. With Bell's Theorem, we now know Schr�dinger's superpositions and Einstein's spooky interactions indeed exist.Authors Bruce Rosenblum and Fred Kuttner explain all of this in non-technical terms with help from some fanciful stories and bits about the theory's developers. They present the quantum mystery honestly, with an emphasis on what is and what is not speculation.Physics' encounter with consciousness is its skeleton in the closet. Because the authors open the closet and examine the skeleton, theirs is a controversial book. Quantum Enigma's description of the experimental quantum facts, and the quantum theory explaining them, is undisputed. Interpreting what it all means, however, is controversial.Every interpretation of quantum physics encounters consciousness. Rosenblum and Kuttner therefore turn to exploring consciousness itself--and encounter quantum physics. Free will and anthropic principles become crucial issues, and the connection of consciousness with the cosmos suggested by some leading quantum cosmologists is mind-blowing.Readers are brought to a boundary where the particular expertise of physicists is no longer a sure guide. They will find, instead, the facts and hints provided by quantum mechanics and the ability to speculate for themselves.

The Order of Time


Carlo Rovelli - 2017
    Philosophers, artists and poets have long explored its meaning while scientists have found that its structure is different from the simple intuition we have of it. From Boltzmann to quantum theory, from Einstein to loop quantum gravity, our understanding of time has been undergoing radical transformations. Time flows at different speeds in different places, the past and the future differ far less than we might think and the very notion of the present evaporates in the vast universe. With his extraordinary charm and sense of wonder, bringing together science, philosophy and art, Carlo Rovelli unravels this mystery, inviting us to imagine a world where time is in us and we are not in time.

13 Journeys Through Space and Time: Christmas Lectures from the Royal Institution


Colin Stuart - 2016
    With a foreword by ESA astronaut Tim Peake.Started at the Royal Institution (RI) in 1825 by Michael Faraday, the Christmas Lectures have been broadcast on television since the 1960s and have formed part of the British Christmas tradition for generations. First devised to attract young people to the magic of science through spectacular demonstrations, they are now watched by millions of people around the world every year.Drawing on the incredible archive at the RI, which is packed full of handwritten notebooks, photographs and transcripts, this book will focus on thirteen of the most captivating Lectures given at the RI on space and time, taking a look at what we thought we knew then and what has been discovered since.

Wholeness and the Implicate Order


David Bohm - 1980
    Although deeply influenced by Einstein, he was also, more unusually for a scientist, inspired by mysticism. Indeed, in the 1970s and 1980s he made contact with both J. Krishnamurti and the Dalai Lama whose teachings helped shape his work. In both science and philosophy, Bohm's main concern was with understanding the nature of reality in general and of consciousness in particular. In this classic work he develops a theory of quantum physics which treats the totality of existence as an unbroken whole. Writing clearly and without technical jargon, he makes complex ideas accessible to anyone interested in the nature of reality.