Book picks similar to
The Penguin Dictionary of Curious and Interesting Numbers by David G. Wells
mathematics
non-fiction
math
reference
How to Destroy the Universe: and 34 Other Really Interesting Uses of Physics
Paul Parsons - 2011
How to Destroy the Universe embraces thirty-five key physics ideas in a way that anyone can understand. Read this book and you will discover how to reverse the effects of global warming and fend off killer asteroids. You'll learn essential survival skills such as how to live through a lightning strike and how to fall into a black hole without being turned into spaghetti. You'll discover how to turn lead into gold, how to travel to the centre of the Earth and how to use physics to predict the stock market. How to Destroy the Universe will make you see the world through fresh eyes.
Elementary Number Theory
David M. Burton - 1976
It reveals the attraction that has drawn leading mathematicians and amateurs alike to number theory over the course of history.
Discrete Mathematical Structures
Bernard Kolman - 1995
It covers areas such as fundamentals, logic, counting, relations and digraphs, trees, topics in graph theory, languages and finite-state machines, and groups and coding.
Calculus
Michael Spivak - 1967
His aim is to present calculus as the first real encounter with mathematics: it is the place to learn how logical reasoning combined with fundamental concepts can be developed into a rigorous mathematical theory rather than a bunch of tools and techniques learned by rote. Since analysis is a subject students traditionally find difficult to grasp, Spivak provides leisurely explanations, a profusion of examples, a wide range of exercises and plenty of illustrations in an easy-going approach that enlightens difficult concepts and rewards effort. Calculus will continue to be regarded as a modern classic, ideal for honours students and mathematics majors, who seek an alternative to doorstop textbooks on calculus, and the more formidable introductions to real analysis.
Elementary Linear Algebra with Applications
Howard Anton - 1973
It proceeds from familiar concepts to the unfamiliar, from the concrete to the abstract. Readers consistently praise this outstanding text for its expository style and clarity of presentation. The applications version features a wide variety of interesting, contemporary applications. Clear, accessible, step-by-step explanations make the material crystal clear. Established the intricate thread of relationships between systems of equations, matrices, determinants, vectors, linear transformations and eigenvalues.
Thinking Statistically
Uri Bram - 2011
Along the way we’ll learn how selection bias can explain why your boss doesn’t know he sucks (even when everyone else does); how to use Bayes’ Theorem to decide if your partner is cheating on you; and why Mark Zuckerberg should never be used as an example for anything. See the world in a whole new light, and make better decisions and judgements without ever going near a t-test. Think. Think Statistically.
The Riemann Hypothesis: The Greatest Unsolved Problem in Mathematics
Karl Sabbagh - 2002
They speak of it in awed terms and consider it to be an even more difficult problem than Fermat's last theorem, which was finally proven by Andrew Wiles in 1995.In The Riemann Hypothesis, acclaimed author Karl Sabbagh interviews some of the world's finest mathematicians who have spent their lives working on the problem--and whose approaches to meeting the challenges thrown up by the hypothesis are as diverse as their personalities.Wryly humorous, lively, accessible and comprehensive, The Riemann Hypothesis is a compelling exploration of the people who do math and the ideas that motivate them to the brink of obsession--and a profound meditation on the ultimate meaning of mathematics.
Mathematics: Is God Silent?
James Nickel - 2001
The addition of this book is a must for all upper-level Christian school curricula and for college students and adults interested in math or related fields of science and religion. It will serve as a solid refutation for the claim, often made in court, that mathematics is one subject, which cannot be taught from a distinctively Biblical perspective.
Six Degrees: The Science of a Connected Age
Duncan J. Watts - 2003
Whether they bind computers, economies, or terrorist organizations, networks are everywhere in the real world, yet only recently have scientists attempted to explain their mysterious workings.From epidemics of disease to outbreaks of market madness, from people searching for information to firms surviving crisis and change, from the structure of personal relationships to the technological and social choices of entire societies, Watts weaves together a network of discoveries across an array of disciplines to tell the story of an explosive new field of knowledge, the people who are building it, and his own peculiar path in forging this new science.
Logic: A Very Short Introduction
Graham Priest - 2000
In this lively and accessible introduction, Graham Priest shows how wrong this conception is. He explores the philosophical roots of the subject, explaining how modern formal logic deals with issues ranging from the existence of God and the reality of time to paradoxes of probability and decision theory. Along the way, the basics of formal logic are explained in simple, non-technical terms, showing that logic is a powerful and exciting part of modern philosophy.About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundreds of key topics, from philosophy to Freud, quantum theory to Islam.
Godel: A Life Of Logic, The Mind, And Mathematics
John L. Casti - 2000
His Incompleteness Theorem turned not only mathematics but also the whole world of science and philosophy on its head. Equally legendary were Gö's eccentricities, his close friendship with Albert Einstein, and his paranoid fear of germs that eventually led to his death from self-starvation. Now, in the first popular biography of this strange and brilliant thinker, John Casti and Werner DePauli bring the legend to life. After describing his childhood in the Moravian capital of Brno, the authors trace the arc of Gö's remarkable career, from the famed Vienna Circle, where philosophers and scientists debated notions of truth, to the Institute for Advanced Study in Princeton, New Jersey, where he lived and worked until his death in 1978. In the process, they shed light on Gö's contributions to mathematics, philosophy, computer science, artificial intelligence -- even cosmology -- in an entertaining and accessible way.
Numerology and the Divine Triangle
Faith Javane - 1979
Part II includes extensive delineations of each of the numbers 1 to 78 and, for the first time in book form, a synthesis of numerology, astrology and the Tarot. Each number is explained as personal number vibrations, as a temporary number vibration, in terms of its astrological correspondence and in terms of its Tarot symbolism. Each of the Tarot cards is illustrated. Numerology and the Divine Triangle is the book to which all books on the subject will be compared from now on.
Trigonometry For Dummies
Mary Jane Sterling - 2005
It also explains the "why" of trigonometry, using real-world examples that illustrate the value of trigonometry in a variety of careers. Mary Jane Sterling (Peoria, IL) has taught mathematics at Bradley University in Peoria for more than 20 years. She is also the author of the highly successful Algebra For Dummies (0-7645-5325-9).
Proofs and Refutations: The Logic of Mathematical Discovery
Imre Lakatos - 1976
Much of the book takes the form of a discussion between a teacher and his students. They propose various solutions to some mathematical problems and investigate the strengths and weaknesses of these solutions. Their discussion (which mirrors certain real developments in the history of mathematics) raises some philosophical problems and some problems about the nature of mathematical discovery or creativity. Imre Lakatos is concerned throughout to combat the classical picture of mathematical development as a steady accumulation of established truths. He shows that mathematics grows instead through a richer, more dramatic process of the successive improvement of creative hypotheses by attempts to 'prove' them and by criticism of these attempts: the logic of proofs and refutations.