Book picks similar to
The Theory of Composites by Graeme W. Milton
65-numerical-analysis
68-computer-science
74-mechanics-of-deformable-solids
mathematics
My Best Mathematical and Logic Puzzles
Martin Gardner - 1994
He was especially careful to present new and unfamiliar puzzles that had not been included in such classic collections as those by Sam Loyd and Henry Dudeney. Later, these puzzles were published in book collections, incorporating reader feedback on alternate solutions or interesting generalizations.The present volume contains a rich selection of 70 of the best of these brain teasers, in some cases including references to new developments related to the puzzle. Now enthusiasts can challenge their solving skills and rattle their egos with such stimulating mind-benders as The Returning Explorer, The Mutilated Chessboard, Scrambled Box Tops, The Fork in the Road, Bronx vs. Brooklyn, Touching Cigarettes, and 64 other problems involving logic and basic math. Solutions are included.
Fifty Challenging Problems in Probability with Solutions
Frederick Mosteller - 1965
Selected for originality, general interest, or because they demonstrate valuable techniques, the problems are ideal as a supplement to courses in probability or statistics, or as stimulating recreation for the mathematically minded. Detailed solutions. Illustrated.
Quantum Electrodynamics
Richard P. Feynman - 1962
Designed for the student of experimental physics who does not intend to take more advanced graduate courses in theoretical physics, the material consists of notes on the third of a three-semester course given at the California Institute of Technology.
Foundations of Complex Analysis
S. Ponnusamy - 2002
Suitable for a two semester course in complex analysis, or as a supplementary text for an advanced course in function theory, this book aims to give students a good foundation of complex analysis and provides a basis for solving problems in mathematics, physics, engineering and many other sciences.
Understanding Analysis
Stephen Abbott - 2000
The aim of a course in real analysis should be to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination.
Elementary Number Theory
David M. Burton - 1976
It reveals the attraction that has drawn leading mathematicians and amateurs alike to number theory over the course of history.
Elementary Analysis: The Theory of Calculus
Kenneth A. Ross - 1980
It is highly recommended for anyone planning to study advanced analysis, e.g., complex variables, differential equations, Fourier analysis, numerical analysis, several variable calculus, and statistics. It is also recommended for future secondary school teachers. A limited number of concepts involving the real line and functions on the real line are studied. Many abstract ideas, such as metric spaces and ordered systems, are avoided. The least upper bound property is taken as an axiom and the order properties of the real line are exploited throughout. A thorough treatment of sequences of numbers is used as a basis for studying standard calculus topics. Optional sections invite students to study such topics as metric spaces and Riemann-Stieltjes integrals.
Calculus: An Intuitive and Physical Approach
Morris Kline - 1967
In-depth explorations of the derivative, the differentiation and integration of the powers of x, and theorems on differentiation and antidifferentiation lead to a definition of the chain rule and examinations of trigonometric functions, logarithmic and exponential functions, techniques of integration, polar coordinates, much more. Clear-cut explanations, numerous drills, illustrative examples. 1967 edition. Solution guide available upon request.
The Art and Craft of Problem Solving
Paul Zeitz - 1999
Readers are encouraged to do math rather than just study it. The author draws upon his experience as a coach for the International Mathematics Olympiad to give students an enhanced sense of mathematics and the ability to investigate and solve problems.
Calculus: The Classic Edition
Earl W. Swokowski - 1991
Groundbreaking in every way when first published, this book is a simple, straightforward, direct calculus text. It's popularity is directly due to its broad use of applications, the easy-to-understand writing style, and the wealth of examples and exercises which reinforce conceptualization of the subject matter. The author wrote this text with three objectives in mind. The first was to make the book more student-oriented by expanding discussions and providing more examples and figures to help clarify concepts. To further aid students, guidelines for solving problems were added in many sections of the text. The second objective was to stress the usefulness of calculus by means of modern applications of derivatives and integrals. The third objective, to make the text as accurate and error-free as possible, was accomplished by a careful examination of the exposition, combined with a thorough checking of each example and exercise.
Number Theory
George E. Andrews - 1994
In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simplicity of the proofs for many theorems.Among the topics covered in this accessible, carefully designed introduction are multiplicativity-divisibility, including the fundamental theorem of arithmetic, combinatorial and computational number theory, congruences, arithmetic functions, primitive roots and prime numbers. Later chapters offer lucid treatments of quadratic congruences, additivity (including partition theory) and geometric number theory.Of particular importance in this text is the author's emphasis on the value of numerical examples in number theory and the role of computers in obtaining such examples. Exercises provide opportunities for constructing numerical tables with or without a computer. Students can then derive conjectures from such numerical tables, after which relevant theorems will seem natural and well-motivated..
The Book of Numbers
John H. Conway - 1995
Whether it is a visualization of the Catalan numbers or an explanation of how the Fibonacci numbers occur in nature, there is something in here to delight everyone. The diagrams and pictures, many of which are in color, make this book particularly appealing and fun. A few of the discussions may be confusing to those who are not adept mathematicians; those who are may be irked that certain facts are mentioned without an accompanying proof. Nonetheless, The Book of Numbers will succeed in infecting any reader with an enthusiasm for numbers.
The Pythagorean Solution
Joseph Badal - 2003
This edition was rewritten, updated, and released on April 28, 2015.When recently-divorced American John Hammond arrives on the Aegean island of Samos, he is unaware of events that happened nearly seven decades earlier that will embroil him in death and violence, and change his life forever.Late one night he finds Greek fisherman Petros Vangelos mortally wounded in an alley. Vangelos gives Hammond a coded map before he expires. With that map, Hammond becomes the link to a Turkish tramp steamer named Sabiya that sank in a storm in 1945 with a fortune in gold and jewels aboard. Also on the Sabiya, in a waterproof safe, are documents that implicate a long-dead German SS Officer in the theft of tens of millions of dollars in valuables from Holocaust victims and the laundering of those valuables by the Nazi’s Swiss banker partner. That partnership helped build a huge banking enterprise that is now run by that Swiss banker’s son who will stop at nothing to prevent disclosure of his father’s crimes.Hammond’s visit to Samos quickly turns into a roller coaster ride on which he encounters violence, new friendships, and a woman he loves, all of which irrevocably alter the course of his life.The Pythagorean Solution is a thrilling, non-stop adventure that will make the reader want to reserve a seat on a flight to Samos.>
This is a new release of a previously published edition.
The Psychology of Invention in the Mathematical Field
Jacques Hadamard - 1945
Role of the unconscious in invention; the medium of ideas — do they come to mind in words? in pictures? in mathematical terms? Much more. "It is essential for the mathematician, and the layman will find it good reading." — Library Journal.
The Principles of Mathematics
Bertrand Russell - 1903
Russell's classic The Principles of Mathematics sets forth his landmark thesis that mathematics and logic are identical―that what is commonly called mathematics is simply later deductions from logical premises.His ideas have had a profound influence on twentieth-century work on logic and the foundations of mathematics.