Visual Complex Analysis


Tristan Needham - 1997
    Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack ofadvanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicatedwith the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.

Higher Engineering Mathematics


B.V. Ramana - 2006
    Plethora of Solved examples help the students know the variety of problems & Procedure to solve them. Plenty of practice problems facilitate testing their understanding of the subject. Key Features: Covers the syllabus of all the four papers of Engineering Mathematics Detailed coverage of topics with lot of solved examples rendering clear understanding to the students. Engineering Applications of Integral Calculus, Ordinary Differential Equations of First and Higher Order, & Partial Differential Equations illustrate the use of these methods. Chapters on preliminary topics like Analytical Solid Geometry Matrices and Determinants Sequence and Series Complex Numbers Vector Algebra Differential and Integral Calculus Extensive coverage of Probability and Statistics (5 chapters). Covers the syllabus of all the four papers of Engineering Mathematics Engineering Applications of Integral Calculus, Ordinary Differential Equations of First and Higher Order, & Partial Differential Equations illustrate the use of these methods. Extensive coverage of ?Probability and Statistics (5 chapters) Table of Content: PART I PRELIMI NARIES Chapter 1 Vector Algebra , Theory of Equations ,Complex Numbers PART II DIFFERENTIAL AND INTEGRAL CALCULUS

A Course of Pure Mathematics


G.H. Hardy - 1908
    Since its publication in 1908, it has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of a missionary with the rigor of a purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit.

Elementary Linear Algebra with Applications


Howard Anton - 1973
    It proceeds from familiar concepts to the unfamiliar, from the concrete to the abstract. Readers consistently praise this outstanding text for its expository style and clarity of presentation. The applications version features a wide variety of interesting, contemporary applications. Clear, accessible, step-by-step explanations make the material crystal clear. Established the intricate thread of relationships between systems of equations, matrices, determinants, vectors, linear transformations and eigenvalues.

Abstract Algebra


I.N. Herstein - 1986
    Providing a concise introduction to abstract algebra, this work unfolds some of the fundamental systems with the aim of reaching applicable, significant results.

The Ultimate Fate Of The Universe


Jamal Nazrul Islam - 1983
    To understand the universe in the far future, we must first describe its present state and structure on the grand scale, and how its present properties arose. Dr Islam explains these topics in an accessible way in the first part of the book. From this background he speculates about the future evolution of the universe and predicts the major changes that will occur. The author has largely avoided mathematical formalism and therefore the book is well suited to general readers with a modest background knowledge of physics and astronomy.

Mathematics


Keith Devlin - 1988
    A modern classic by an accomplished mathematician and best-selling author has been updated to encompass and explain the recent headline-making advances in the field in non-technical terms.

Schaum's Outline of Calculus


Frank Ayres Jr. - 1990
    They'll also find the related analytic geometry much easier. The clear review of algebra and geometry in this edition will make calculus easier for students who wish to strengthen their knowledge in these areas. Updated to meet the emphasis in current courses, this new edition of a popular guide--more than 104,000 copies were bought of the prior edition--includes problems and examples using graphing calculators..

Linear Algebra and Its Applications [with CD-ROM]


David C. Lay - 1993
    

Book of Proof


Richard Hammack - 2009
    It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity. Topics include sets, logic, counting, methods of conditional and non-conditional proof, disproof, induction, relations, functions and infinite cardinality.

Mathematical Methods for Physics and Engineering: A Comprehensive Guide


K.F. Riley - 1998
    As well as lucid descriptions of all the topics and many worked examples, it contains over 800 exercises. New stand-alone chapters give a systematic account of the 'special functions' of physical science, cover an extended range of practical applications of complex variables, and give an introduction to quantum operators. Further tabulations, of relevance in statistics and numerical integration, have been added. In this edition, half of the exercises are provided with hints and answers and, in a separate manual available to both students and their teachers, complete worked solutions. The remaining exercises have no hints, answers or worked solutions and can be used for unaided homework; full solutions are available to instructors on a password-protected web site, www.cambridge.org/9780521679718.

The Unreasonable Effectiveness of Mathematics in the Natural Sciences


Eugene Paul Wigner - 1959
    In the paper, Wigner observed that the mathematical structure of a physical theory often points the way to further advances in that theory and even to empirical predictions.

Introduction to Modern Optics


Grant R. Fowles - 1968
    The first half of the book deals with classical physical optics; the second principally with the quantum nature of light. Chapters 1 and 2 treat the propagation of light waves, including the concepts of phase and group velocities, and the vectorial nature of light. Chapter 3 applies the concepts of partial coherence and coherence length to the study of interference, and Chapter 4 takes up multiple-beam interference and includes Fabry-Perot interferometry and multilayer-film theory. Diffraction and holography are the subjects of Chapter 5, and the propagation of light in material media (including crystal and nonlinear optics) are central to Chapter 6. Chapters 7 and 8 introduce the quantum theory of light and elementary optical spectra, and Chapter 9 explores the theory of light amplification and lasers. Chapter 10 briefly outlines ray optics in order to introduce students to the matrix method for treating optical systems and to apply the ray matrix to the study of laser resonators.Many applications of the laser to the study of optics are integrated throughout the text. The author assumes students have had an intermediate course in electricity and magnetism and some advanced mathematics beyond calculus. For classroom use, a list of problems is included at the end of each chapter, with selected answers at the end of the book.

104 Number Theory Problems: From the Training of the USA IMO Team


Titu Andreescu - 2006
    Offering inspiration and intellectual delight, the problems throughout the book encourage students to express their ideas in writing to explain how they conceive problems, what conjectures they make, and what conclusions they reach. Applying specific techniques and strategies, readers will acquire a solid understanding of the fundamental concepts and ideas of number theory.

A Textbook of Engineering Mathematics


N.P. Bali - 2010
    The salient features of the book are as follows: It exactly covers the prescribed syllabus. Nothing undesirable has been included and nothing essential has been left. Its approach is explanatory and language is lucid and communicable. The exposition of the subject matter is systematic and the students are better prepared to solve the problems. All fundamentals of the included topics are explained with a micro-analysis. Sufficient number of solved examples have been given to let the students understand the various skills necessary to solve the problems. These examples are well-graded. Unsolved exercises of multi-varieties have been given in a well-graded style. Attempting those on his own, will enable a student to create confidence and independence in him/her regarding the understanding of the subject. Daily life problems and practical applications have been incorporated in the body of the text. A large number of attractive and accurate figures have been drawn which enable a student to grasp the subject in an easier way. All the answers have been checked and verified. About The Author: N.P. Bali is a prolific author of over 100 books for degree and engineering students. He has been writing books for more than forty years. His books on the following topics are well known for their easy comprehension and lucid presentation: Algebra, Trigonometry, Differential Calculus, Integral Calculus, Real Analysis, Co-ordinate Geometry, Statics, Dynamics etc. Dr. Manish Goyal has been associated with