Book picks similar to
Schaum's Outline of Advanced Mathematics for Engineers and Scientists by Murray R. Spiegel
mathematics
math
textbooks
engineering
The Theoretical Minimum: What You Need to Know to Start Doing Physics
Leonard Susskind - 2013
In this unconventional introduction, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Unlike most popular physics books—which give readers a taste of what physicists know but shy away from equations or math—Susskind and Hrabovsky actually teach the skills you need to do physics, beginning with classical mechanics, yourself. Based on Susskind's enormously popular Stanford University-based (and YouTube-featured) continuing-education course, the authors cover the minimum—the theoretical minimum of the title—that readers need to master to study more advanced topics.An alternative to the conventional go-to-college method, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.
Street-Fighting Mathematics: The Art of Educated Guessing and Opportunistic Problem Solving
Sanjoy Mahajan - 2010
Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation.In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge--from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool--the general principle--from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems.Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.
Introduction to Algebra
Richard Rusczyk - 2007
Topics covered in the book include linear equations, ratios, quadratic equations, special factorizations, complex numbers, graphing linear and quadratic equations, linear and quadratic inequalities, functions, polynomials, exponents and logarithms, absolute value, sequences and series, and much more!The text is structured to inspire the reader to explore and develop new ideas. Each section starts with problems, giving the student a chance to solve them without help before proceeding. The text then includes solutions to these problems, through which algebraic techniques are taught. Important facts and powerful problem solving approaches are highlighted throughout the text. In addition to the instructional material, the book contains well over 1000 problems.This book can serve as a complete Algebra I course, and also includes many concepts covered in Algebra II. Middle school students preparing for MATHCOUNTS, high school students preparing for the AMC, and other students seeking to master the fundamentals of algebra will find this book an instrumental part of their mathematics libraries.656About the author: Richard Rusczyk is a co-author of Art of Problem Solving, Volumes 1 and 2, the author of Art of Problem Solving's Introduction to Geometry. He was a national MATHCOUNTS participant, a USA Math Olympiad winner, and is currently director of the USA Mathematical Talent Search.
Advanced Engineering Mathematics
Erwin Kreyszig - 1968
The new edition provides invitations - not requirements - to use technology, as well as new conceptual problems, and new projects that focus on writing and working in teams.
Calculus for Dummies
Mark Ryan - 2003
Others who have no intention of ever studying the subject have this notion that calculus is impossibly difficult unless you happen to be a direct descendant of Einstein. Well, the good news is that you can master calculus. It's not nearly as tough as its mystique would lead you to think. Much of calculus is really just very advanced algebra, geometry, and trig. It builds upon and is a logical extension of those subjects. If you can do algebra, geometry, and trig, you can do calculus.Calculus For Dummies is intended for three groups of readers:Students taking their first calculus course - If you're enrolled in a calculus course and you find your textbook less than crystal clear, this is the book for you. It covers the most important topics in the first year of calculus: differentiation, integration, and infinite series.Students who need to brush up on their calculus to prepare for other studies - If you've had elementary calculus, but it's been a couple of years and you want to review the concepts to prepare for, say, some graduate program, Calculus For Dummies will give you a thorough, no-nonsense refresher course.Adults of all ages who'd like a good introduction to the subject - Non-student readers will find the book's exposition clear and accessible. Calculus For Dummies takes calculus out of the ivory tower and brings it down to earth. This is a user-friendly math book. Whenever possible, the author explains the calculus concepts by showing you connections between the calculus ideas and easier ideas from algebra and geometry. Then, you'll see how the calculus concepts work in concrete examples. All explanations are in plain English, not math-speak. Calculus For Dummies covers the following topics and more:Real-world examples of calculus The two big ideas of calculus: differentiation and integration Why calculus works Pre-algebra and algebra review Common functions and their graphs Limits and continuity Integration and approximating area Sequences and series Don't buy the misconception. Sure calculus is difficult - but it's manageable, doable. You made it through algebra, geometry, and trigonometry. Well, calculus just picks up where they leave off - it's simply the next step in a logical progression.
Digital Image Processing
Rafael C. Gonzalez - 1977
Completely self-contained, heavily illustrated, and mathematically accessible, it has a scope of application that is not limited to the solution of specialized problems. Digital Image Fundamentals. Image Enhancement in the Spatial Domain. Image Enhancement in the Frequency Domain. Image Restoration. Color Image Processing. Wavelets and Multiresolution Processing. Image Compression. Morphological Image Processing. Image Segmentation. Representation and Description. Object Recognition.
Differential Equations with Applications and Historical Notes
George F. Simmons - 1972
Simmons advocates a careful approach to the subject, covering such topics as the wave equation, Gauss's hypergeometric function, the gamma function and the basic problems of the calculus of variations in an explanatory fashions - ensuring that students fully understand and appreciate the topics.
Digital Communications: Fundamentals and Applications
Bernard Sklar - 1987
It can serve both as an excellent introduction for the graduate student with some background in probability theory or as a valuable reference for the practicing ommunication system engineer. For both communities, the treatment is clear and well presented." - Andrew Viterbi, The Viterbi Group Master every key digital communications technology, concept, and technique. Digital Communications, Second Edition is a thoroughly revised and updated edition of the field's classic, best-selling introduction. With remarkable clarity, Dr. Bernard Sklar introduces every digital communication technology at the heart of today's wireless and Internet revolutions, providing a unified structure and context for understanding them -- all without sacrificing mathematical precision. Sklar begins by introducing the fundamentals of signals, spectra, formatting, and baseband transmission. Next, he presents practical coverage of virtually every contemporary modulation, coding, and signal processing technique, with numeric examples and step-by-step implementation guidance. Coverage includes: Signals and processing steps: from information source through transmitter, channel, receiver, and information sinkKey tradeoffs: signal-to-noise ratios, probability of error, and bandwidth expenditureTrellis-coded modulation and Reed-Solomon codes: what's behind the mathSynchronization and spread spectrum solutionsFading channels: causes, effects, and techniques for withstanding fadingThe first complete how-to guide to turbo codes: squeezing maximum performance out of digital connectionsImplementing encryption with PGP, the de facto industry standard Whether you're building wireless systems, xDSL, fiber or coax-based services, satellite networks, or Internet infrastructure, Sklar presents the theory and the practical implementation details you need. With nearly 500 illustrations and 300 problems and exercises, there's never been a faster way to master advanced digital communications. CD-ROM INCLUDED The CD-ROM contains a complete educational version of Elanix' SystemView DSP design software, as well as detailed notes for getting started, a comprehensive DSP tutorial, and over 50 additional communications exercises.
Multivariable Calculus
James Stewart - 1991
In the Fourth Edition CALCULUS, EARLY TRANSCENDENTALS these functions are introduced in the first chapter and their limits and derivatives are found in Chapters 2 and 3 at the same time as polynomials and other elementary functions. In this Fourth Edition, Stewart retains the focus on problem solving, the meticulous accuracy, the patient explanations, and the carefully graded problems that have made these texts word so well for a wide range of students. All new and unique features in CALCULUS, FOURTH EDITION have been incorporated into these revisions also.
Biochemical Engineering Fundamentals
James E. Bailey - 1977
The biological background provided enables students to comprehend the major problems in biochemical engineering and formulate effective solutions.
Introduction to Chemical Engineering Thermodynamics
J.M. Smith - 2010
This text provides a thorough exposition of the principles of thermodynamics and details their application to chemical processes. The new edition has been updated to reflect the growth in such areas as materials and electrochemicals.
Mathematical Methods for Physics and Engineering: A Comprehensive Guide
K.F. Riley - 1998
As well as lucid descriptions of all the topics and many worked examples, it contains over 800 exercises. New stand-alone chapters give a systematic account of the 'special functions' of physical science, cover an extended range of practical applications of complex variables, and give an introduction to quantum operators. Further tabulations, of relevance in statistics and numerical integration, have been added. In this edition, half of the exercises are provided with hints and answers and, in a separate manual available to both students and their teachers, complete worked solutions. The remaining exercises have no hints, answers or worked solutions and can be used for unaided homework; full solutions are available to instructors on a password-protected web site, www.cambridge.org/9780521679718.
Computer Science Illuminated
Nell B. Dale - 2002
Written By Two Of Today'S Most Respected Computer Science Educators, Nell Dale And John Lewis, The Text Provides A Broad Overview Of The Many Aspects Of The Discipline From A Generic View Point. Separate Program Language Chapters Are Available As Bundle Items For Those Instructors Who Would Like To Explore A Particular Programming Language With Their Students. The Many Layers Of Computing Are Thoroughly Explained Beginning With The Information Layer, Working Through The Hardware, Programming, Operating Systems, Application, And Communication Layers, And Ending With A Discussion On The Limitations Of Computing. Perfect For Introductory Computing And Computer Science Courses, Computer Science Illuminated, Third Edition's Thorough Presentation Of Computing Systems Provides Computer Science Majors With A Solid Foundation For Further Study, And Offers Non-Majors A Comprehensive And Complete Introduction To Computing.
Algebra II For Dummies
Mary Jane Sterling - 2004
To understand algebra is to possess the power to grow your skills and knowledge so you can ace your courses and possibly pursue further study in math. Algebra II For Dummies is the fun and easy way to get a handle on this subject and solve even the trickiest algebra problems. This friendly guide shows you how to get up to speed on exponential functions, laws of logarithms, conic sections, matrices, and other advanced algebra concepts. In no time you'll have the tools you need to:Interpret quadratic functions Find the roots of a polynomial Reason with rational functions Expose exponential and logarithmic functions Cut up conic sections Solve linear and non linear systems of equations Equate inequalities Simplifyy complex numbers Make moves with matrices Sort out sequences and sets This straightforward guide offers plenty of multiplication tricks that only math teachers know. It also profiles special types of numbers, making it easy for you to categorize them and solve any problems without breaking a sweat. When it comes to understanding and working out algebraic equations, Algebra II For Dummies is all you need to succeed!
Calculus, Better Explained: A Guide To Developing Lasting Intuition
Kalid Azad - 2015
Learn the essential concepts using concrete analogies and vivid diagrams, not mechanical definitions. Calculus isn't a set of rules, it's a specific, practical viewpoint we can apply to everyday thinking. Frustrated With Abstract, Mechanical Lessons? I was too. Despite years of classes, I didn't have a strong understanding of calculus concepts. Sure, I could follow mechanical steps, but I had no lasting intuition. The classes I've seen are too long, taught in the wrong order, and without solid visualizations. Here's how this course is different: 1) It gets to the point. A typical class plods along, saving concepts like Integrals until Week 8. I want to see what calculus can offer by Minute 8. Each compact, tightly-written lesson can be read in 15 minutes. 2) Concepts are taught in their natural order. Most classes begin with the theory of limits, a technical concept discovered 150 years after calculus was invented. That's like putting a new driver into a Formula-1 racecar on day 1. We can begin with the easy-to-grasp concepts discovered 2000 years ago. 3) It has vivid analogies and visualizations. Calculus is usually defined as the "study of change"... which sounds like history or geology. Instead of an abstract definition, we'll see calculus a step-by-step viewpoint to explore patterns. 4) It's written by a human, for humans. I'm not a haughty professor or strict schoolmarm. I'm a friend who saw a fun way to internalize some difficult ideas. This course is a chat over coffee, not a keep-your-butt-in-your-seat lecture. The goal is to help you grasp the Aha! moments behind calculus in hours, not a painful semester (or a decade, in my case). Join Thousands Of Happy Readers Here's a few samples of anonymous feedback as people went through the course. The material covers a variety of levels, whether you're looking for intuitive appreciation or the specifics of the rules. "I've done all of this stuff before, and I do understand calculus intuitively, but this was the most fun I've had going through this kind of thing. The informal writing and multitude of great analogies really helps this become an enjoyable read and the rest is simple after that - you make this seem easy, but at the same time, you aren't doing it for us…This is what math education is supposed to be like :)" "I have psychology and medicine background so I relate your ideas to my world. To me the most useful idea was what each circle production feels like. Rings are natural growth…Slices are automatable chunks and automation cheapens production… Boards in the shape on an Arch are psychologically most palatable for work (wind up, hard part, home stretch). Brilliant and kudos, from one INTP to another." "I like how you're introducing both derivatives and integrals at the same time - it's really helps with understanding the relationship between them. Also, I appreciate how you're coming from such a different angle than is traditionally taken - it's always interesting to see where you decide to go next." "That was breathtaking. Seriously, mail my air back please, I've grown used to it. Beautiful work, thank you. Lesson 15 was masterful. I am starting to feel calculus. "d/dx is good" (sorry, couldn't resist!)."