Wholeness and the Implicate Order


David Bohm - 1980
    Although deeply influenced by Einstein, he was also, more unusually for a scientist, inspired by mysticism. Indeed, in the 1970s and 1980s he made contact with both J. Krishnamurti and the Dalai Lama whose teachings helped shape his work. In both science and philosophy, Bohm's main concern was with understanding the nature of reality in general and of consciousness in particular. In this classic work he develops a theory of quantum physics which treats the totality of existence as an unbroken whole. Writing clearly and without technical jargon, he makes complex ideas accessible to anyone interested in the nature of reality.

Introductory Graph Theory


Gary Chartrand - 1984
    Introductory Graph Theory presents a nontechnical introduction to this exciting field in a clear, lively, and informative style. Author Gary Chartrand covers the important elementary topics of graph theory and its applications. In addition, he presents a large variety of proofs designed to strengthen mathematical techniques and offers challenging opportunities to have fun with mathematics. Ten major topics — profusely illustrated — include: Mathematical Models, Elementary Concepts of Graph Theory, Transportation Problems, Connection Problems, Party Problems, Digraphs and Mathematical Models, Games and Puzzles, Graphs and Social Psychology, Planar Graphs and Coloring Problems, and Graphs and Other Mathematics. A useful Appendix covers Sets, Relations, Functions, and Proofs, and a section devoted to exercises — with answers, hints, and solutions — is especially valuable to anyone encountering graph theory for the first time. Undergraduate mathematics students at every level, puzzlists, and mathematical hobbyists will find well-organized coverage of the fundamentals of graph theory in this highly readable and thoroughly enjoyable book.

Mathematical Methods for Physics and Engineering: A Comprehensive Guide


K.F. Riley - 1998
    As well as lucid descriptions of all the topics and many worked examples, it contains over 800 exercises. New stand-alone chapters give a systematic account of the 'special functions' of physical science, cover an extended range of practical applications of complex variables, and give an introduction to quantum operators. Further tabulations, of relevance in statistics and numerical integration, have been added. In this edition, half of the exercises are provided with hints and answers and, in a separate manual available to both students and their teachers, complete worked solutions. The remaining exercises have no hints, answers or worked solutions and can be used for unaided homework; full solutions are available to instructors on a password-protected web site, www.cambridge.org/9780521679718.

Solid State Physics


Neil W. Ashcroft - 1976
    This book provides an introduction to the field of solid state physics for undergraduate students in physics, chemistry, engineering, and materials science.

On Growth and Form


D'Arcy Wentworth Thompson - 1917
    Why do living things and physical phenomena take the forms they do? Analyzing the mathematical and physical aspects of biological processes, this historic work, first published in 1917, has become renowned as well for the poetry of is descriptions.

On Numbers and Games


John H. Conway - 1976
    Originally written to define the relation between the theories of transfinite numbers and mathematical games, the resulting work is a mathematically sophisticated but eminently enjoyable guide to game theory. By defining numbers as the strengths of positions in certain games, the author arrives at a new class, the surreal numbers, that includes both real numbers and ordinal numbers. These surreal numbers are applied in the author's mathematical analysis of game strategies. The additions to the Second Edition present recent developments in the area of mathematical game theory, with a concentration on surreal numbers and the additive theory of partizan games.

Bayesian Data Analysis


Andrew Gelman - 1995
    Its world-class authors provide guidance on all aspects of Bayesian data analysis and include examples of real statistical analyses, based on their own research, that demonstrate how to solve complicated problems. Changes in the new edition include:Stronger focus on MCMC Revision of the computational advice in Part III New chapters on nonlinear models and decision analysis Several additional applied examples from the authors' recent research Additional chapters on current models for Bayesian data analysis such as nonlinear models, generalized linear mixed models, and more Reorganization of chapters 6 and 7 on model checking and data collectionBayesian computation is currently at a stage where there are many reasonable ways to compute any given posterior distribution. However, the best approach is not always clear ahead of time. Reflecting this, the new edition offers a more pluralistic presentation, giving advice on performing computations from many perspectives while making clear the importance of being aware that there are different ways to implement any given iterative simulation computation. The new approach, additional examples, and updated information make Bayesian Data Analysis an excellent introductory text and a reference that working scientists will use throughout their professional life.

How to Count to Infinity


Marcus du Sautoy - 2020
    But this book will help you to do something that humans have only recently understood how to do: to count to regions that no animal has ever reached. By the end of this book you'll be able to count to infinity... and beyond. On our way to infinity we'll discover how the ancient Babylonians used their bodies to count to 60 (which gave us 60 minutes in the hour), how the number zero was only discovered in the 7th century by Indian mathematicians contemplating the void, why in China going into the red meant your numbers had gone negative and why numbers might be our best language for communicating with alien life.But for millennia, contemplating infinity has sent even the greatest minds into a spin. Then at the end of the nineteenth century mathematicians discovered a way to think about infinity that revealed that it is a number that we can count. Not only that. They found that there are an infinite number of infinities, some bigger than others. Just using the finite neurons in your brain and the finite pages in this book, you'll have your mind blown discovering the secret of how to count to infinity.Do something amazing and learn a new skill thanks to the Little Ways to Live a Big Life books!

Applied Multivariate Statistical Analysis


Richard A. Johnson - 1982
    of Wisconsin-Madison) and Wichern (Texas A&M U.) present the newest edition of this college text on the statistical methods for describing and analyzing multivariate data, designed for students who have taken two or more statistics courses. The fifth edition includes the addition of seve

Thinking Mathematically


John Mason - 1982
    It demonstrates how to encourage, develop, and foster the processes which seem to come naturally to mathematicians.

The Wages of Wins: Taking Measure of the Many Myths in Modern Sport


David J. Berri - 2006
    Over the years sports debates have become muddled by many myths that do not match the numbers generated by those playing the games. In The Wages of Wins, the authors use layman's language and easy to follow examples based on their own academic research to debunk many of the most commonly held beliefs about sports.In this updated version of their book, these authors explain why Allen Iverson leaving Philadelphia made the 76ers a better team, why the Yankees find it so hard to repeat their success from the late 1990s, and why even great quarterbacks like Brett Favre are consistently inconsistent. The book names names, and makes it abundantly clear that much of the decision making of coaches and general managers does not hold up to an analysis of the numbers. Whether you are a fantasy league fanatic or a casual weekend fan, much of what you believe about sports will change after reading this book.

Hidden Figures


Margot Lee Shetterly - 2016
    Set amid the civil rights movement, the never-before-told true story of NASA’s African-American female mathematicians who played a crucial role in America’s space program. Before Neil Armstrong walked on the moon, a group of professionals worked as ‘Human Computers’, calculating the flight paths that would enable these historic achievements. Among these were a coterie of bright, talented African-American women. Segregated from their white counterparts, these ‘coloured computers’ used pencil and paper to write the equations that would launch rockets and astronauts, into space. Moving from World War II through NASA’s golden age, touching on the civil rights era, the Space Race, the Cold War and the women’s rights movement, ‘Hidden Figures’ interweaves a rich history of mankind’s greatest adventure with the intimate stories of five courageous women whose work forever changed the world.

The Value of Science: Essential Writings of Henri Poincare


Henri Poincaré - 1905
    A genius who throughout his life solved complex mathematical calculations in his head, and a writer gifted with an inimitable style, Poincaré rose to the challenge of interpreting the philosophy of science to scientists and nonscientists alike. His lucid and welcoming prose made him the Carl Sagan of his time. This volume collects his three most important books: Science and Hypothesis (1903); The Value of Science (1905); and Science and Method (1908).

Principles of Quantum Mechanics


Ramamurti Shankar - 1980
    The postulates of quantum mechanics and the mathematical underpinnings are discussed in a clear, succinct manner." (American Scientist)"No matter how gently one introduces students to the concept of Dirac's bras and kets, many are turned off. Shankar attacks the problem head-on in the first chapter, and in a very informal style suggests that there is nothing to be frightened of." (Physics Bulletin)Reviews of the Second Edition:"This massive text of 700 and odd pages has indeed an excellent get-up, is very verbal and expressive, and has extensively worked out calculational details---all just right for a first course. The style is conversational, more like a corridor talk or lecture notes, though arranged as a text. ... It would be particularly useful to beginning students and those in allied areas like quantum chemistry." (Mathematical Reviews)R. Shankar has introduced major additions and updated key presentations in this second edition of Principles of Quantum Mechanics. New features of this innovative text include an entirely rewritten mathematical introduction, a discussion of Time-reversal invariance, and extensive coverage of a variety of path integrals and their applications. Additional highlights include:- Clear, accessible treatment of underlying mathematics- A review of Newtonian, Lagrangian, and Hamiltonian mechanics- Student understanding of quantum theory is enhanced by separate treatment of mathematical theorems and physical postulates- Unsurpassed coverage of path integrals and their relevance in contemporary physicsThe requisite text for advanced undergraduate- and graduate-level students, Principles of Quantum Mechanics, Second Edition is fully referenced and is supported by many exercises and solutions. The book's self-contained chapters also make it suitable for independent study as well as for courses in applied disciplines.

Pattern Recognition and Machine Learning


Christopher M. Bishop - 2006
    However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.