Book picks similar to
Solid State Electronic Devices by Ben G. Streetman
textbooks
engineering
electronics
electrical-engineering
Electronic Principles
Albert Paul Malvino - 1979
It's been updated to keep coverage in step with the fast-changing world of electronics. Yet, it retains Malvino's clear writing style, supported throughout by abundant illustrations and examples.
Electronic Devices and Circuit Theory
Robert L. Boylestad - 2005
Boylestad and Nashelsky offer students a complete and comprehensive survey, focusing on all the essentials they will need to succeed on the job. This very readable presentation is supported by strong pedagogy and content that is ideal for new students of this rapidly changing field. Its colorful, student-friendly layout boasts a large number of stunning photographs. A broad range of ancillary materials is available for instructor support.
Practical Electronics for Inventors
Paul Scherz - 1998
Instead, it tells you-and shows you-what basic and advanced electronics parts and components do, and how they work. Chock-full of illustrations, Practical Electronics for Inventors offers over 750 hand-drawn images that provide clear, detailed instructions that can help turn theoretical ideas into real-life inventions and gadgets.
Communication Systems
Simon Haykin - 1978
In addition to being the most up-to-date communications text available, Simon Haykin has added MATLAB computer experiments.
Introduction to Algorithms
Thomas H. Cormen - 1989
Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.
Modern Operating Systems
Andrew S. Tanenbaum - 1992
What makes an operating system modern? According to author Andrew Tanenbaum, it is the awareness of high-demand computer applications--primarily in the areas of multimedia, parallel and distributed computing, and security. The development of faster and more advanced hardware has driven progress in software, including enhancements to the operating system. It is one thing to run an old operating system on current hardware, and another to effectively leverage current hardware to best serve modern software applications. If you don't believe it, install Windows 3.0 on a modern PC and try surfing the Internet or burning a CD. Readers familiar with Tanenbaum's previous text, Operating Systems, know the author is a great proponent of simple design and hands-on experimentation. His earlier book came bundled with the source code for an operating system called Minux, a simple variant of Unix and the platform used by Linus Torvalds to develop Linux. Although this book does not come with any source code, he illustrates many of his points with code fragments (C, usually with Unix system calls). The first half of Modern Operating Systems focuses on traditional operating systems concepts: processes, deadlocks, memory management, I/O, and file systems. There is nothing groundbreaking in these early chapters, but all topics are well covered, each including sections on current research and a set of student problems. It is enlightening to read Tanenbaum's explanations of the design decisions made by past operating systems gurus, including his view that additional research on the problem of deadlocks is impractical except for "keeping otherwise unemployed graph theorists off the streets." It is the second half of the book that differentiates itself from older operating systems texts. Here, each chapter describes an element of what constitutes a modern operating system--awareness of multimedia applications, multiple processors, computer networks, and a high level of security. The chapter on multimedia functionality focuses on such features as handling massive files and providing video-on-demand. Included in the discussion on multiprocessor platforms are clustered computers and distributed computing. Finally, the importance of security is discussed--a lively enumeration of the scores of ways operating systems can be vulnerable to attack, from password security to computer viruses and Internet worms. Included at the end of the book are case studies of two popular operating systems: Unix/Linux and Windows 2000. There is a bias toward the Unix/Linux approach, not surprising given the author's experience and academic bent, but this bias does not detract from Tanenbaum's analysis. Both operating systems are dissected, describing how each implements processes, file systems, memory management, and other operating system fundamentals. Tanenbaum's mantra is simple, accessible operating system design. Given that modern operating systems have extensive features, he is forced to reconcile physical size with simplicity. Toward this end, he makes frequent references to the Frederick Brooks classic The Mythical Man-Month for wisdom on managing large, complex software development projects. He finds both Windows 2000 and Unix/Linux guilty of being too complicated--with a particular skewering of Windows 2000 and its "mammoth Win32 API." A primary culprit is the attempt to make operating systems more "user-friendly," which Tanenbaum views as an excuse for bloated code. The solution is to have smart people, the smallest possible team, and well-defined interactions between various operating systems components. Future operating system design will benefit if the advice in this book is taken to heart. --Pete Ostenson
Modern Digital and Analog Communication Systems
B.P. Lathi - 1988
It begins by introducing students to the basics of communication systems without using probabilistic theory. Only after a solid knowledge base--an understanding of how communication systems work--has been built are concepts requiring probability theory covered. This third edition has been thoroughly updated and revised to include expanded coverage of digital communications. New topics discussed include spread-spectrum systems, cellular communication systems, global positioning systems (GPS), and an entire chapter on emerging digital technologies (such as SONET, ISDN, BISDN, ATM, and video compression). Ideal for the first communication systems course for electrical engineers, Modern Digital and Analog Communication Systems offers students a superb pedagogical style; it consistently does an excellent job of explaining difficult concepts clearly, using prose as well as mathematics. The author makes every effort to give intuitive insights--rather than just proofs--as well as heuristic explanations of theoretical results wherever possible. Featuring lucid explanations, well-chosen examples clarifying abstract mathematical results, and excellent illustrations, this unique text is highly informative and easily accessible to students.
Introduction to the Theory of Computation
Michael Sipser - 1996
Sipser's candid, crystal-clear style allows students at every level to understand and enjoy this field. His innovative "proof idea" sections explain profound concepts in plain English. The new edition incorporates many improvements students and professors have suggested over the years, and offers updated, classroom-tested problem sets at the end of each chapter.
Field and Wave Electromagnetics
David K. Cheng - 1982
These include applications drawn from important new areas of technology such as optical fibers, radome design, satellite communication, and microstrip lines. There is also added coverage of several new topics, including Hall effect, radar equation and scattering cross section, transients in transmission lines, waveguides and circular cavity resonators, wave propagation in the ionosphere, and helical antennas. New exercises, new problems, and many worked-out examples make this complex material more accessible to students.
Computer Organization & Design: The Hardware/Software Interface
David A. Patterson - 1993
More importantly, this book provides a framework for thinking about computer organization and design that will enable the reader to continue the lifetime of learning necessary for staying at the forefront of this competitive discipline. --John Crawford Intel Fellow Director of Microprocessor Architecture, Intel The performance of software systems is dramatically affected by how well software designers understand the basic hardware technologies at work in a system. Similarly, hardware designers must understand the far reaching effects their design decisions have on software applications. For readers in either category, this classic introduction to the field provides a deep look into the computer. It demonstrates the relationship between the software and hardware and focuses on the foundational concepts that are the basis for current computer design. Using a distinctive learning by evolution approach the authors present each idea from its first principles, guiding readers through a series of worked examples that incrementally add more complex instructions until they ha
Fundamentals of Heat and Mass Transfer
Frank P. Incropera - 1981
Noted for its crystal clear presentation and easy-to-follow problem solving methodology, Incropera and Dewitt's systematic approach to the first law develops reader confidence in using this essential tool for thermal analysis. Readers will learn the meaning of the terminology and physical principles of heat transfer as well as how to use requisite inputs for computing heat transfer rates and/or material temperatures.
Digital Fundamentals
Thomas L. Floyd - 1986
Floyd's acclaimed emphasis on "applications using real devices" and on "troubleshooting" gives users the problem-solving experience they'll need in their professional careers. Known for its clear, accurate explanations of theory supported by superior exercises and examples, this book's full-color format is packed with the visual aids today's learners need to grasp often complex concepts. KEY TOPICS The book features a comprehensive review of fundamental topics and a unique introduction to two popular programmable logic software packages (Altera and Xilinx) and boundary scan software. For electronic technicians, system designers, engineers.
Fundamentals of Electric Circuits (With CD-ROM)
Charles K. Alexander - 1999
The main objective of this book is to present circuit analysis in a clear, easy-to-understand manner, with many practical applications to interest the student. Each chapter opens with either historical sketches or career information on a subdiscipline of electrical engineering. This is followed by an introduction that includes chapter objectives. Each chapter closes with a summary of the key points and formulas. The authors present principles in an appealing and lucid step-by-step manner, carefully explaining each step. Important formulas are highlighted to help students sort out what is essential and what is not. Many pedagogical aids reinforce the concepts learned in the text so that students get comfortable with the various methods of analysis presented in the text.
Fundamentals of Physics
David Halliday - 2004
A unique combination of authoritative content and stimulating applications. * Numerous improvements in the text, based on feedback from the many users of the sixth edition (both instructors and students) * Several thousand end-of-chapter problems have been rewritten to streamline both the presentations and answers * 'Chapter Puzzlers' open each chapter with an intriguing application or question that is explained or answered in the chapter * Problem-solving tactics are provided to help beginning Physics students solve problems and avoid common error * The first section in every chapter introduces the subject of the chapter by asking and answering, "What is Physics?" as the question pertains to the chapter * Numerous supplements available to aid teachers and students The extended edition provides coverage of developments in Physics in the last 100 years, including: Einstein and Relativity, Bohr and others and Quantum Theory, and the more recent theoretical developments like String Theory.
Operating System Concepts
Abraham Silberschatz - 1985
By staying current, remaining relevant, and adapting to emerging course needs, this market-leading text has continued to define the operating systems course. This Seventh Edition not only presents the latest and most relevant systems, it also digs deeper to uncover those fundamental concepts that have remained constant throughout the evolution of today's operation systems. With this strong conceptual foundation in place, students can more easily understand the details related to specific systems. New Adaptations * Increased coverage of user perspective in Chapter 1. * Increased coverage of OS design throughout. * A new chapter on real-time and embedded systems (Chapter 19). * A new chapter on multimedia (Chapter 20). * Additional coverage of security and protection. * Additional coverage of distributed programming. * New exercises at the end of each chapter. * New programming exercises and projects at the end of each chapter. * New student-focused pedagogy and a new two-color design to enhance the learning process.