What If the Earth Had Two Moons?: And Nine Other Thought-Provoking Speculations on the Solar System


Neil F. Comins - 2010
    In What If the Earth Had Two Moons, Neil Comins leads us on a fascinating ten-world journey as we explore what our planet would be like under alternative astronomical conditions. In each case, the Earth would be different, often in surprising ways. The title chapter, for example, gives us a second moon orbiting closer to Earth than the one we have now. The night sky is a lot brighter, but that won't last forever. Eventually the moons collide, with one extra-massive moon emerging after a period during which Earth sports a Saturn-like ring. This and nine and other speculative essays provide us with insights into the Earth as it exists today, while shedding new light on the burgeoning search for life on planets orbiting other stars. Appealing to adult and young adult readers alike, this book follows on the author's previous bestseller, What If the Moon Didn't Exist?, with completely new scenarios backed by the latest astronomical research.

Light of the Stars: Alien Worlds and the Fate of the Earth


Adam Frank - 2018
    Astrophysicist Adam Frank traces the question of alien life and intelligence from the ancient Greeks to the leading thinkers of our own time, and shows how we as a civilization can only hope to survive climate change if we recognize what science has recently discovered: that we are just one of ten billion trillion planets in the Universe, and it’s highly likely that many of those planets hosted technologically advanced alien civilizations. What’s more, each of those civilizations must have faced the same challenge of civilization-driven climate change.Written with great clarity and conviction, Light of the Stars builds on the inspiring work of pioneering scientists such as Frank Drake and Carl Sagan, whose work at the dawn of the space age began building the new science of astrobiology; Jack James, the Texas-born engineer who drove NASA’s first planetary missions to success; Vladimir Vernadsky, the Russian geochemist who first envisioned the Earth’s biosphere; and James Lovelock and Lynn Margulis, who invented Gaia theory. Frank recounts the perilous journey NASA undertook across millions of miles of deep space to get its probes to Venus and Mars, yielding our first view of the cosmic laws of planets and climate that changed our understanding of our place in the universe.Thrilling science at the grandest of scales, Light of the Stars explores what may be the largest question of all: What can the likely presence of life on other worlds tell us about our own fate?

How I Killed Pluto and Why It Had It Coming


Mike Brown - 2010
    Then, in 2005, astronomer Mike Brown made the discovery of a lifetime: a tenth planet, Eris, slightly bigger than Pluto. But instead of its resulting in one more planet being added to our solar system, Brown’s find ignited a firestorm of controversy that riled the usually sedate world of astronomy and launched him into the public eye. The debate culminated in the demotion of Pluto from real planet to the newly coined category of “dwarf” planet. Suddenly Brown was receiving hate mail from schoolchildren and being bombarded by TV reporters—all because of the discovery he had spent years searching for and a lifetime dreaming about.Filled with both humor and drama, How I Killed Pluto and Why It Had It Coming is Mike Brown’s engaging first-person account of the most tumultuous year in modern astronomy—which he inadvertently caused. As it guides readers through important scientific concepts and inspires us to think more deeply about our place in the cosmos, it is also an entertaining and enlightening personal story: While Brown sought to expand our understanding of the vast nature of space, his own life was changed in the most immediate, human ways by love, birth, and death. A heartfelt and personal perspective on the demotion of everyone’s favorite farflung planet, How I Killed Pluto and Why It Had It Coming is the book for anyone, young or old, who has ever dreamed of exploring the universe—and who among us hasn’t?

The Big Picture: On the Origins of Life, Meaning, and the Universe Itself


Sean Carroll - 2016
     Where are we? Who are we? Are our emotions, our beliefs, and our hopes and dreams ultimately meaningless out there in the void? Does human purpose and meaning fit into a scientific worldview?In short chapters filled with intriguing historical anecdotes, personal asides, and rigorous exposition, readers learn the difference between how the world works at the quantum level, the cosmic level, and the human level--and then how each connects to the other.  Carroll's presentation of the principles that have guided the scientific revolution from Darwin and Einstein to the origins of life, consciousness, and the universe is dazzlingly unique.Carroll shows how an avalanche of discoveries in the past few hundred years has changed our world and what really matters to us. Our lives are dwarfed like never before by the immensity of space and time, but they are redeemed by our capacity to comprehend it and give it meaning.The Big Picture is an unprecedented scientific worldview, a tour de force that will sit on shelves alongside the works of Stephen Hawking, Carl Sagan, Daniel Dennett, and E. O. Wilson for years to come.

The Island of Knowledge: The Limits of Science and the Search for Meaning


Marcelo Gleiser - 2014
    In so doing, he reaches a provocative conclusion: science, the main tool we use to find answers, is fundamentally limited.These limits to our knowledge arise both from our tools of exploration and from the nature of physical reality: the speed of light, the uncertainty principle, the impossibility of seeing beyond the cosmic horizon, the incompleteness theorem, and our own limitations as an intelligent species. Recognizing limits in this way, Gleiser argues, is not a deterrent to progress or a surrendering to religion. Rather, it frees us to question the meaning and nature of the universe while affirming the central role of life and ourselves in it. Science can and must go on, but recognizing its limits reveals its true mission: to know the universe is to know ourselves.Telling the dramatic story of our quest for understanding, The Island of Knowledge offers a highly original exploration of the ideas of some of the greatest thinkers in history, from Plato to Einstein, and how they affect us today. An authoritative, broad-ranging intellectual history of our search for knowledge and meaning, The Island of Knowledge is a unique view of what it means to be human in a universe filled with mystery.

The Arrow of Time


Peter Coveney - 1988
    Theories that contain time as a simple quantity form the basis of our understanding of many scientific disciplines, yet the debate rages on: why does there seem to be a direction to time, an arrow of time pointing from past to future?In The Arrow of Time, a major bestseller in England, Dr. Peter Coveney, a research scientist, and award-winning journalist Dr. Roger Highfield, demonstrate that the commonsense view of time agrees with the most advanced scientific theory. Time does in fact move like an arrow, shooting forward into what is genuinely unknown, leaving the past immutably behind. The authors make their case by exploring three centuries of science, offering bold reinterpretations of Newton's mechanics, Einstein's special and general theories of relativity, quantum mechanics, and advancing the insights of James Gleick's Chaos.

The Amazing Story of Quantum Mechanics: A Math-Free Exploration of the Science that Made Our World


James Kakalios - 2010
    Using illustrations and examples from science fiction pulp magazines and comic books, The Amazing Story of Quantum Mechanics explains the fundamental principles of quantum mechanics that underlie the world we live in.Watch a Video

The Singular Universe and the Reality of Time: A Proposal in Natural Philosophy


Roberto Mangabeira Unger - 2014
    The more we discover, the more puzzling the universe appears to be. How and why are the laws of nature what they are? A philosopher and a physicist, world-renowned for their radical ideas in their fields, argue for a revolution. To keep cosmology scientific, we must replace the old view in which the universe is governed by immutable laws by a new one in which laws evolve. Then we can hope to explain them. The revolution that Roberto Mangabeira Unger and Lee Smolin propose relies on three central ideas. There is only one universe at a time. Time is real: everything in the structure and regularities of nature changes sooner or later. Mathematics, which has trouble with time, is not the oracle of nature and the prophet of science; it is simply a tool with great power and immense limitations. The argument is readily accessible to non-scientists as well as to the physicists and cosmologists whom it challenges.

The Little Book of Black Holes


Steven S. Gubser - 2017
    Although Einstein understood that black holes were mathematical solutions to his equations, he never accepted their physical reality--a viewpoint many shared. This all changed in the 1960s and 1970s, when a deeper conceptual understanding of black holes developed just as new observations revealed the existence of quasars and X-ray binary star systems, whose mysterious properties could be explained by the presence of black holes. Black holes have since been the subject of intense research--and the physics governing how they behave and affect their surroundings is stranger and more mind-bending than any fiction.After introducing the basics of the special and general theories of relativity, this book describes black holes both as astrophysical objects and theoretical "laboratories" in which physicists can test their understanding of gravitational, quantum, and thermal physics. From Schwarzschild black holes to rotating and colliding black holes, and from gravitational radiation to Hawking radiation and information loss, Steven Gubser and Frans Pretorius use creative thought experiments and analogies to explain their subject accessibly. They also describe the decades-long quest to observe the universe in gravitational waves, which recently resulted in the LIGO observatories' detection of the distinctive gravitational wave "chirp" of two colliding black holes--the first direct observation of black holes' existence.The Little Book of Black Holes takes readers deep into the mysterious heart of the subject, offering rare clarity of insight into the physics that makes black holes simple yet destructive manifestations of geometric destiny.

The Case for Mars


Robert Zubrin - 1996
    The planet most like ours, it has still been thought impossible to reach, let alone explore and inhabit.Now with the advent of a revolutionary new plan, all this has changed. leading space exploration authority Robert Zubrin has crafted a daring new blueprint, Mars Direct, presented here with illustrations, photographs, and engaging anecdotes.The Case for Mars is not a vision for the far future or one that will cost us impossible billions. It explains step-by-step how we can use present-day technology to send humans to Mars within ten years; actually produce fuel and oxygen on the planet's surface with Martian natural resources; how we can build bases and settlements; and how we can one day "terraform" Mars--a process that can alter the atmosphere of planets and pave the way for sustainable life.

Edge of the Universe A Voyage to the Cosmic Horizon and Beyond


Paul Halpern - 2012
    Yet recent theories suggest that there is far more to the universe than what our instruments record--in fact, it could be infinite. Colossal flows of galaxies, large empty regions called voids, and other unexplained phenomena offer clues that our own "bubble universe" could be part of a greater realm called the multiverse. How big is the observable universe? What it is made of? What lies beyond it? Was there a time before the Big Bang? Could space have unseen dimensions? In this book, physicist and science writer Paul Halpern explains what we know--and what we hope to soon find out--about our extraordinary cosmos.Explains what we know about the Big Bang, the accelerating universe, dark energy, dark flow, and dark matter to examine some of the theories about the content of the universe and why its edge is getting farther away from us fasterExplores the idea that the observable universe could be a hologram and that everything that happens within it might be written on its edgeWritten by physicist and popular science writer Paul Halpern, whose other books include "Collider: The Search for the World's Smallest Particles," and "What's Science Ever Done For Us: What the Simpsons Can Teach Us About Physics, Robots, Life, and the Universe"

Time Reborn: From the Crisis in Physics to the Future of the Universe


Lee Smolin - 2013
    You experience it passing every day when you watch clocks tick, bread toast, and children grow. But most physicists see things differently, from Newton to Einstein to today’s quantum theorists. For them, time isn’t real. You may think you experience time passing, but they say it’s just an illusion.Lee Smolin, author of the controversial bestseller The Trouble with Physics, argues this limited notion of time is holding physics back. It’s time for a major revolution in scientific thought. The reality of time could be the key to the next big breakthrough in theoretical physics.What if the laws of physics themselves were not timeless? What if they could evolve? Time Reborn offers a radical new approach to cosmology that embraces the reality of time and opens up a whole new universe of possibilties. There are few ideas that, like our notion of time, shape our thinking about literally everything, with major implications for physics and beyond—from climate change to the economic crisis. Smolin explains in lively and lucid prose how the true nature of time impacts our world.

Horizons: Exploring the Universe


Michael A. Seeds - 1981
    To achieve this goal, they focuses on two central questions: "What Are We?" which highlights your place as a planet dweller in an evolving universe, guiding you to better understand where we came from and how we formed; and "How Do We Know?" which provides insights into how the process of science can teach us more about what we are.

The Extravagant Universe: Exploding Stars, Dark Energy, and the Accelerating Cosmos


Robert P. Kirshner - 2002
    One of the world's leading astronomers, Robert Kirshner, takes readers inside a lively research team on the quest that led them to an extraordinary cosmological discovery: the expansion of the universe is accelerating under the influence of a dark energy that makes space itself expand. In addition to sharing the story of this exciting discovery, Kirshner also brings the science up-to-date in a new epilogue. He explains how the idea of an accelerating universe--once a daring interpretation of sketchy data--is now the standard assumption in cosmology today.This measurement of dark energy--a quality of space itself that causes cosmic acceleration--points to a gaping hole in our understanding of fundamental physics. In 1917, Einstein proposed the cosmological constant to explain a static universe. When observations proved that the universe was expanding, he cast this early form of dark energy aside. But recent observations described first-hand in this book show that the cosmological constant--or something just like it--dominates the universe's mass and energy budget and determines its fate and shape.Warned by Einstein's blunder, and contradicted by the initial results of a competing research team, Kirshner and his colleagues were reluctant to accept their own result. But, convinced by evidence built on their hard-earned understanding of exploding stars, they announced their conclusion that the universe is accelerating in February 1998. Other lines of inquiry and parallel supernova research now support a new synthesis of a cosmos dominated by dark energy but also containing several forms of dark matter. We live in an extravagant universe with a surprising number of essential ingredients: the real universe we measure is not the simplest one we could imagine.

The Quantum World: The disturbing theory at the heart of reality (New Scientist Instant Expert)


New Scientist - 2017
    Things can exist in two places at once and travel backwards and forwards in time. Waves and particles are one and the same, and objects change their behaviour according to whether they are being watched. This is not some alternative universe but the realm of the very small, where quantum mechanics rules. In this weird world of atoms and their constituents, our common sense understanding of reality breaks down - yet quantum mechanics has never failed an experimental test. What does it all mean? For all its weirdness, quantum mechanics has given us many practical technologies including lasers and the transistors that underlie computers and all digital technology. In the future, it promises computers more powerful than any built before, the ability to communicate with absolute privacy, and even quantum teleportation. The Quantum World explores the past, present and future of quantum science, its applications and mind-bending implications. Discover how ideas from quantum mechanics are percolating out into the vast scale of the cosmos - perhaps, in the future, to reveal a new understanding of the big bang and the nature of space and time.ABOUT THE SERIESNew Scientist Instant Expert books are definitive and accessible entry points to the most important subjects in science; subjects that challenge, attract debate, invite controversy and engage the most enquiring minds. Designed for curious readers who want to know how things work and why, the Instant Expert series explores the topics that really matter and their impact on individuals, society, and the planet, translating the scientific complexities around us into language that's open to everyone, and putting new ideas and discoveries into perspective and context.