Book picks similar to
Dive Into Python by Mark Pilgrim


programming
python
computer-science
technical

Algorithms in a Nutshell


George T. Heineman - 2008
    Algorithms in a Nutshell describes a large number of existing algorithms for solving a variety of problems, and helps you select and implement the right algorithm for your needs -- with just enough math to let you understand and analyze algorithm performance. With its focus on application, rather than theory, this book provides efficient code solutions in several programming languages that you can easily adapt to a specific project. Each major algorithm is presented in the style of a design pattern that includes information to help you understand why and when the algorithm is appropriate. With this book, you will:Solve a particular coding problem or improve on the performance of an existing solutionQuickly locate algorithms that relate to the problems you want to solve, and determine why a particular algorithm is the right one to useGet algorithmic solutions in C, C++, Java, and Ruby with implementation tipsLearn the expected performance of an algorithm, and the conditions it needs to perform at its bestDiscover the impact that similar design decisions have on different algorithmsLearn advanced data structures to improve the efficiency of algorithmsWith Algorithms in a Nutshell, you'll learn how to improve the performance of key algorithms essential for the success of your software applications.

Design for Hackers


David Kadavy - 2011
    The term 'hacker' has been redefined to consist of anyone who has an insatiable curiosity as to how things work--and how they can try to make them better. This book is aimed at hackers of all skill levels and explains the classical principles and techniques behind beautiful designs by deconstructing those designs in order to understand what makes them so remarkable. Author and designer David Kadavy provides you with the framework for understanding good design and places a special emphasis on interactive mediums. You'll explore color theory, the role of proportion and geometry in design, and the relationship between medium and form. Packed with unique reverse engineering design examples, this book inspires and encourages you to discover and create new beauty in a variety of formats. Breaks down and studies the classical principles and techniques behind the creation of beautiful design. Illustrates cultural and contextual considerations in communicating to a specific audience. Discusses why design is important, the purpose of design, the various constraints of design, and how today's fonts are designed with the screen in mind. Dissects the elements of color, size, scale, proportion, medium, and form. Features a unique range of examples, including the graffiti in the ancient city of Pompeii, the lack of the color black in Monet's art, the style and sleekness of the iPhone, and more.By the end of this book, you'll be able to apply the featured design principles to your own web designs, mobile apps, or other digital work.

Black Hat Python: Python Programming for Hackers and Pentesters


Justin Seitz - 2014
    But just how does the magic happen?In Black Hat Python, the latest from Justin Seitz (author of the best-selling Gray Hat Python), you'll explore the darker side of Python's capabilities writing network sniffers, manipulating packets, infecting virtual machines, creating stealthy trojans, and more. You'll learn how to:Create a trojan command-and-control using GitHubDetect sandboxing and automate common malware tasks, like keylogging and screenshottingEscalate Windows privileges with creative process controlUse offensive memory forensics tricks to retrieve password hashes and inject shellcode into a virtual machineExtend the popular Burp Suite web-hacking toolAbuse Windows COM automation to perform a man-in-the-browser attackExfiltrate data from a network most sneakilyInsider techniques and creative challenges throughout show you how to extend the hacks and how to write your own exploits.When it comes to offensive security, your ability to create powerful tools on the fly is indispensable. Learn how in Black Hat Python."

Cryptography Engineering: Design Principles and Practical Applications


Niels Ferguson - 2010
    Cryptography is vital to keeping information safe, in an era when the formula to do so becomes more and more challenging. Written by a team of world-renowned cryptography experts, this essential guide is the definitive introduction to all major areas of cryptography: message security, key negotiation, and key management. You'll learn how to think like a cryptographer. You'll discover techniques for building cryptography into products from the start and you'll examine the many technical changes in the field.After a basic overview of cryptography and what it means today, this indispensable resource covers such topics as block ciphers, block modes, hash functions, encryption modes, message authentication codes, implementation issues, negotiation protocols, and more. Helpful examples and hands-on exercises enhance your understanding of the multi-faceted field of cryptography.An author team of internationally recognized cryptography experts updates you on vital topics in the field of cryptography Shows you how to build cryptography into products from the start Examines updates and changes to cryptography Includes coverage on key servers, message security, authentication codes, new standards, block ciphers, message authentication codes, and more Cryptography Engineering gets you up to speed in the ever-evolving field of cryptography.

Pro C# 2010 and the .NET 4 Platform


Andrew Troelsen - 2009
    As expected, .NET 4 brings a wealth of new APIs to the base class libraries and several new syntactical constructs to C#. For example, it is now possible to create C# methods that support optional and named arguments. As well, you are able to resolve types completely at runtime using the new dynamic keyword. As far as APIs are concerned, this edition of Pro C# 2010 and the .NET 4 Platform will cover a number of new details, including:• the Dynamic Language Runtime (DLR)• the Task Parallel Library (TPL, including PLINQ)• the ADO.NET Entity Framework (as well as LINQ to EF)• expanded coverage of the Windows Presentation Foundation (WPF) API• improved support for COM interopIf you're checking out this book for the first time, understand that it targets experienced software professionals and students of computer science—so please don't expect three chapters devoted to "variable scope" here! The mission of this text is to provide you with a rock-solid foundation in the C# programming language (including a full discussion of OOP) and the critical aspects of the .NET 4 platform.Once you digest the information presented in the book you hold in your hands, you'll be in a perfect position to apply this knowledge to your specific programming assignments, and you'll be well-equipped to explore the .NET universe on your own terms.Andrew TroelsenMicrosoft MVP, Visual Developer—Visual C#; Microsoft Certified Trainer (MCT)

Go in Action


William Kennedy - 2014
    The book begins by introducing the unique features and concepts of Go. Then, you'll get hands-on experience writing real-world applications including websites and network servers, as well as techniques to manipulate and convert data at speeds that will make your friends jealous.

Peopleware: Productive Projects and Teams


Tom DeMarco - 1987
    The answers aren't easy -- just incredibly successful.

The Art of Readable Code


Dustin Boswell - 2010
    Over the past five years, authors Dustin Boswell and Trevor Foucher have analyzed hundreds of examples of "bad code" (much of it their own) to determine why they’re bad and how they could be improved. Their conclusion? You need to write code that minimizes the time it would take someone else to understand it—even if that someone else is you.This book focuses on basic principles and practical techniques you can apply every time you write code. Using easy-to-digest code examples from different languages, each chapter dives into a different aspect of coding, and demonstrates how you can make your code easy to understand.Simplify naming, commenting, and formatting with tips that apply to every line of codeRefine your program’s loops, logic, and variables to reduce complexity and confusionAttack problems at the function level, such as reorganizing blocks of code to do one task at a timeWrite effective test code that is thorough and concise—as well as readable"Being aware of how the code you create affects those who look at it later is an important part of developing software. The authors did a great job in taking you through the different aspects of this challenge, explaining the details with instructive examples." —Michael Hunger, passionate Software Developer

The Hitchhiker's Guide to Python: Best Practices for Development


Kenneth Reitz - 2016
    More than any other language, Python was created with the philosophy of simplicity and parsimony. Now 25 years old, Python has become the primary or secondary language (after SQL) for many business users. With popularity comes diversity--and possibly dilution.This guide, collaboratively written by over a hundred members of the Python community, describes best practices currently used by package and application developers. Unlike other books for this audience, The Hitchhiker's Guide is light on reusable code and heavier on design philosophy, directing the reader to excellent sources that already exist.

Programming in Python 3: A Complete Introduction to the Python Language


Mark Summerfield - 2008
    It brings together all the knowledge needed to write any program, use any standard or third-party Python 3 library, and create new library modules of your own.

The Ruby Way: Solutions and Techniques in Ruby Programming


Hal Fulton - 2001
    This practical "how-to" handbook, written by experienced programmer Hal Fulton, has been updated to not only explain the newest features of Ruby, but also to show how people use Ruby today, including coverage of Ruby on Rails.

How Google Tests Software


James A. Whittaker - 2012
    Legendary testing expert James Whittaker, until recently a Google testing leader, and two top Google experts reveal exactly how Google tests software, offering brand-new best practices you can use even if you're not quite Google's size...yet! Breakthrough Techniques You Can Actually Use Discover 100% practical, amazingly scalable techniques for analyzing risk and planning tests...thinking like real users...implementing exploratory, black box, white box, and acceptance testing...getting usable feedback...tracking issues...choosing and creating tools...testing "Docs & Mocks," interfaces, classes, modules, libraries, binaries, services, and infrastructure...reviewing code and refactoring...using test hooks, presubmit scripts, queues, continuous builds, and more. With these techniques, you can transform testing from a bottleneck into an accelerator-and make your whole organization more productive!

Interactive Data Visualization for the Web


Scott Murray - 2013
    It’s easy and fun with this practical, hands-on introduction. Author Scott Murray teaches you the fundamental concepts and methods of D3, a JavaScript library that lets you express data visually in a web browser. Along the way, you’ll expand your web programming skills, using tools such as HTML and JavaScript.This step-by-step guide is ideal whether you’re a designer or visual artist with no programming experience, a reporter exploring the new frontier of data journalism, or anyone who wants to visualize and share data.Learn HTML, CSS, JavaScript, and SVG basicsDynamically generate web page elements from your data—and choose visual encoding rules to style themCreate bar charts, scatter plots, pie charts, stacked bar charts, and force-directed layoutsUse smooth, animated transitions to show changes in your dataIntroduce interactivity to help users explore data through different viewsCreate customized geographic maps with dataExplore hands-on with downloadable code and over 100 examples

An Introduction to Statistical Learning: With Applications in R


Gareth James - 2013
    This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Make Your Own Neural Network


Tariq Rashid - 2016
     Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.